Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 17(1): 89, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426807

RESUMEN

BACKGROUND: The emergence of resistance to chemotherapy or target therapy, tumor metastasis, and systemic toxicity caused by available anticancer drugs hamper the successful colorectal cancer (CRC) treatment. The rise in epidermal growth factor receptor (EGFR; human epidermal growth factor receptor 1; HER1) expression and enhanced phosphorylation of HER2 and HER3 are associated with tumor resistance, metastasis and invasion, thus resulting in poor outcome of anti-CRC therapy. The use of afatinib, a pan-HER inhibitor, is a potential therapeutic approach for resistant CRC. Additionally, miR-139 has been reported to be negatively correlated with chemoresistance, metastasis, and epithelial-mesenchymal transition (EMT) of CRC. Hence, we develop a nanoparticle formulation consisting of a polymer core to carry afatinib or miR-139, which is surrounded by lipids modified with a targeting ligand and a pH-sensitive penetrating peptide to improve the anticancer effect of cargos against CRC cells. RESULTS: Our findings show that this formulation displays a spherical shape with core/shell structure, homogeneous particle size distribution and negative zeta potential. The prepared formulations demonstrate a pH-sensitive release profile and an enhanced uptake of cargos into human colorectal adenocarcinoma Caco-2 cells in response to the acidic pH. This nanoparticle formulation incorporating afatinib and miR-139 exhibits low toxicity to normal cells but shows a better inhibitory effect on Caco-2 cells than other formulations. Moreover, the encapsulation of afatinib and miR-139 in peptide-modified nanoparticles remarkably induces apoptosis and inhibits migration and resistance of Caco-2 cells via suppression of pan-HER tyrosine kinase/multidrug resistance/metastasis pathways. CONCLUSION: This study proposes a multifunctional nanoparticle formulation for targeted modulation of apoptosis/EGFR/HER/EMT/resistance/progression pathways to increase the sensitivity of colon cancer cells to afatinib.


Asunto(s)
Afatinib/química , Antineoplásicos/química , Lípidos/química , MicroARNs/química , Nanopartículas/química , Péptidos/química , Polímeros/química , Afatinib/farmacología , Afatinib/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Química Farmacéutica/métodos , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Péptidos/farmacología , Péptidos/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratas , Ratas Sprague-Dawley
2.
Int J Mol Sci ; 17(12)2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27916828

RESUMEN

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib, have been demonstrated to effectively treat the patients of extracranial non-small cell lung cancer (NSCLC). However, these patients often develop brain metastasis (BM) during their disease course. The major obstacle to treat BM is the limited penetration of anticancer drugs across the blood-brain barrier (BBB). In the present study, we utilized gefitinib-loaded liposomes with different modifications to improve gefitinib delivery across the in vitro BBB model of bEnd.3 cells. Gefitinib was encapsulated in small unilamellar liposomes modified with glutathione (GSH) and Tween 80 (SUV-G+T; one ligand plus one surfactant) or RF (SUV-RF; one α-helical cell-penetrating peptide). GSH, Tween 80, and RF were tested by the sulforhodamine B (SRB) assay to find their non-cytotoxic concentrations on bEnd.3 cells. The enhancement on gefitinib across the BBB was evaluated by cytotoxicity assay on human lung adenocarcinoma PC9 cells under the bEnd.3 cells grown on the transwell inserts. Our findings showed that gefitinib incorporated in SUV-G+T or SUV-RF across the bEnd.3 cells significantly reduced the viability of PC9 cells more than that of free gefitinib. Furthermore, SUV-RF showed no cytotoxicity on bEnd.3 cells and did not affect the transendothelial electrical resistance (TEER) and transendothelial permeability of sodium fluorescein across the BBB model. Moreover, flow cytometry and confocal laser scanning microscopy were employed to evaluate the endocytosis pathways of SUV-RF. The results indicated that the uptake into bEnd.3 cells was mainly through adsorptive-mediated mechanism via electrostatic interaction and partially through clathrin-mediated endocytosis. In conclusion, cell penetrating peptide-conjugated SUV-RF shed light on improving drug transport across the BBB via modulating the transcytosis pathway(s).


Asunto(s)
Barrera Hematoencefálica/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Glutatión/química , Liposomas/química , Polisorbatos/química , Quinazolinas/química , Quinazolinas/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Gefitinib , Humanos , Neoplasias Pulmonares/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Quinazolinas/farmacología
3.
Neuropsychiatr Dis Treat ; 20: 211-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333612

RESUMEN

Purpose: To determine the diagnostic and localization value of 18F-fluorodeoxyglucose-positron emission tomography (PET)/computed tomography (CT) in patients with focal cortical dysplasia (FCD) who underwent epilepsy surgery. Methods: One hundred and eight patients with pathologically proven FCD who underwent surgery for refractory epilepsy were retrospectively analyzed. All patients underwent magnetic resonance imaging (MRI), 18F-FDG-PET/CT, and video electroencephalography. An MRI diagnosis of FCD was defined as MRI+. A PET/CT diagnosis of FCD was defined as PET/CT+. Results: MRI and PET/CT detected FCD in 20.37% and 93.52% of patients, respectively. The difference was significant. Twenty-one patients were MRI+/PET+, 80 were MRI-/PET+, six were MRI-/PET-, and one was MRI+/PET-. The MRI positivity rate was lowest in patients with FCD type IIIa (5.6%, P < 0.05). Prevalence of MRI-/PET+ was highest in patients with FCD type IIIa (88.89%, P < 0.05). Conclusion: PET/CT is superior to MRI in detecting FCD. FCD type IIIa was more likely than other types to show MRI-/PET+. This suggests that PET/CT has particular diagnostic value for FCD type IIIa patients with negative MRI findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA