Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nano Lett ; 23(8): 3144-3151, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37026614

RESUMEN

Group IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of γ-GeSe, a recently identified polymorph of GeSe. γ-GeSe exhibits high electrical conductivity (∼106 S/m) and a relatively low Seebeck coefficient (9.4 µV/K at room temperature) owing to its high p-doping level (5 × 1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that γ-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties.

2.
Nano Lett ; 20(4): 2443-2451, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32191480

RESUMEN

In optoelectronic devices based on two-dimensional (2D) semiconductor heterojunctions, the efficient charge transport of photogenerated carriers across the interface is a critical factor to determine the device performances. Here, we report an unexplored approach to boost the optoelectronic device performances of the WSe2-MoS2 p-n heterojunctions via the monolithic-oxidation-induced doping and resultant modulation of the interface band alignment. In the proposed device, the atomically thin WOx layer, which is directly formed by layer-by-layer oxidation of WSe2, is used as a charge transport layer for promoting hole extraction. The use of the ultrathin oxide layer significantly enhanced the photoresponsivity of the WSe2-MoS2 p-n junction devices, and the power conversion efficiency increased from 0.7 to 5.0%, maintaining the response time. The enhanced characteristics can be understood by the formation of the low Schottky barrier and favorable interface band alignment, as confirmed by band alignment analyses and first-principle calculations. Our work suggests a new route to achieve interface contact engineering in the heterostructures toward realizing high-performance 2D optoelectronics.

3.
Nanotechnology ; 30(40): 404002, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31234153

RESUMEN

We have performed density functional theory calculations to study the effects caused by the interfacial structure between 2D-MoS2 and 3D-GaN. Two different surface terminations of GaN are considered: Ga-terminated (0001) (Ga-GaN) and N-terminated ([Formula: see text]) (N-GaN) configurations. We confirm that Rashba spin splitting occurs in band structure of MoS2 on GaN. We also find that the surface states of GaN move to the deep position in band structure in the MoS2/Ga-GaN case, while the surface states of GaN are hybridized with MoS2 near the Fermi level for the MoS2/N-GaN case. Furthermore, we investigate the variation in electronic structure of MoS2/GaN heterostructures depending on the number of MoS2 layers. Especially, the top layer MoS2 of the 2L-MoS2/GaN structures shows both n-type and p-type properties depending on the GaN surface termination. As a result, we suggest that the electrical characteristics of the 2D/3D heterostructures could be controlled by the surface terminations of substrate materials.

4.
Nano Lett ; 18(1): 460-466, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29268017

RESUMEN

Electrochemical intercalation is a powerful method for tuning the electronic properties of layered solids. In this work, we report an electrochemical strategy to controllably intercalate lithium ions into a series of van der Waals (vdW) heterostructures built by sandwiching graphene between hexagonal boron nitride (h-BN). We demonstrate that encapsulating graphene with h-BN eliminates parasitic surface side reactions while simultaneously creating a new heterointerface that permits intercalation between the atomically thin layers. To monitor the electrochemical process, we employ the Hall effect to precisely monitor the intercalation reaction. We also simultaneously probe the spectroscopic and electrical transport properties of the resulting intercalation compounds at different stages of intercalation. We achieve the highest carrier density >5 × 1013 cm2 with mobility >103 cm2/(V s) in the most heavily intercalated samples, where Shubnikov-de Haas quantum oscillations are observed at low temperatures. These results set the stage for further studies that employ intercalation in modifying properties of vdW heterostructures.

5.
Nanotechnology ; 29(4): 045201, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29192890

RESUMEN

P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.

6.
Phys Chem Chem Phys ; 20(39): 25240-25245, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30270382

RESUMEN

For utilization of two-dimensional (2D) materials as electronic devices, their mixed-dimensional heterostructures with three-dimensional (3D) materials are receiving much attention. In this study, we have investigated the atomic and electronic structures of the 2D/3D heterojunction between MoS2 and Si(100) using density functional theory calculations; especially, we focus on the contact behavior dependence on the interfacial structures of heterojunctions by considering two types of surface termination of Si(100) surfaces. Calculations show that MoS2 and clean Si(100) form an almost n-type ohmic contact with a very small Schottky barrier height (SBH) due to strong covalent bonds between them, and that the contact between MoS2 and H-covered Si(100) makes a p-n heterojunction with weak van der Waals interactions. Such a difference in contact behaviors can be explained by different electric dipole formation at the heterojunction interfaces. Overall, it is concluded that contact properties can be varied depending on the interfacial structures of 2D(MoS2)/3D(Si) semiconductor heterojunctions.

7.
Phys Chem Chem Phys ; 19(25): 16881-16887, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28627535

RESUMEN

We have performed density functional theory (DFT) calculations of the atomic and electronic structures of ethylenediamine on Ge(100). The two amine groups in ethylenediamine can interact with germanium surface atoms through a N-H dissociative nucleophilic reaction and/or N-dative bonding with an electron-deficient down Ge atom. Of the monodentate and row-bridged bidentate structures that formed, the dative-bonded configurations were found to be more stable than the NH dissociative adsorption structures. The formation of row-bridged bidentate, structures is more favorable than that of on-top or end-bridged structures. In simulated STM images, the three types of row-bridged adsorption structure have characteristic features, and the row-bridged dative-bonded configuration gives rise to features due to both adsorbed ethylenediamine molecules and the underlying Ge atoms.

8.
Nano Lett ; 16(3): 2090-5, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26854585

RESUMEN

In this Letter, we use first-principles simulations to demonstrate the absence of Fermi-level pinning when graphene is in contact with transition metal dichalcogenides (TMDs). We find that formation of either an ohmic or Schottky contact is possible. Then we show that, due to the shallow density of states around its Fermi level, the work function of graphene can be tuned by ion adsorption. Finally we combine work function tuning of graphene and an ideal contact between graphene and TMDs to propose an ionic barristor design that can tune the work function of graphene with a much wider margin than current barristor designs, achieving a dynamic switching among p-type ohmic contact, Schottky contact, and n-type ohmic contact in one device.

9.
Phys Rev Lett ; 115(1): 015502, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26182105

RESUMEN

Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures. We established the first phase diagram summarizing the stacking-dependent gap openings of BLG for a given field. We further identified high-density midgap states, localized on grain boundaries, even under a strong field, which can considerably reduce the overall transport gap.

10.
J Chem Phys ; 140(17): 174707, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811655

RESUMEN

We investigate the electronic properties of bilayer MoS2 exposed to an external electric field by using first-principles calculations. It is found that a larger interlayer distance, referring to that by standard density functional theory (DFT) with respect to that by DFT with empirical dispersion corrections, makes indirect-direct band gap transition possible by electric control. We show that external electric field effectively manipulates the valence band contrast between the K- and Γ-valleys by forming built-in electric dipole fields, which realizes an indirect-direct transition before a semiconductor-metal transition happens. Our results provide a novel efficient access to tune the electronic properties of two-dimensional layered materials.

11.
Nano Lett ; 13(8): 3494-500, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23848516

RESUMEN

A periodically modulated graphene (PMG) generated by nanopatterned surfaces is reported to profoundly modify the intrinsic electronic properties of graphene. The temperature dependence of the sheet resistivity and gate response measurements clearly show a semiconductor-like behavior. Raman spectroscopy reveals significant shifts of the G and the 2D modes induced by the interaction with the underlying grid-like nanostructure. The influence of the periodic, alternating contact with the substrate surface was studied in terms of strain caused by bending of graphene and doping through chemical interactions with underlying substrate atoms. Electronic structure calculations performed on a model of PMG reveals that it is possible to tune a band gap within 0.14-0.19 eV by considering both the periodic mechanical bending and the surface coordination chemistry. Therefore, the PMG can be regarded as a further step toward band gap engineering of graphene devices.

12.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38334519

RESUMEN

Two-dimensional (2D) vertical van der Waals heterostructures (vdWHs) show great potential across various applications. However, synthesizing large-scale structures poses challenges owing to the intricate growth parameters, forming unexpected hybrid film structures. Thus, precision in synthesis and thorough structural analysis are essential aspects. In this study, we successfully synthesized large-scale structured 2D transition metal dichalcogenides (TMDs) via chemical vapor deposition using metal oxide (WO3 and MoO3) thin films and a diluted H2S precursor, individual MoS2, WS2 films and various MoS2/WS2 hybrid films (Type I: MoxW1-xS2 alloy; Type II: MoS2/WS2 vdWH; Type III: MoS2 dots/WS2). Structural analyses, including optical microscopy, Raman spectroscopy, transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy, and cross-sectional imaging revealed that the A1g and E2g modes of WS2 and MoS2 were sensitive to structural variations, enabling hybrid structure differentiation. Type II showed minimal changes in the MoS2's A1g mode, while Types I and III exhibited a ~2.8 cm-1 blue shift. Furthermore, the A1g mode of WS2 in Type I displayed a 1.4 cm-1 red shift. These variations agreed with the TEM-observed microstructural features, demonstrating strain effects on the MoS2-WS2 interfaces. Our study provides insights into the structural features of diverse hybrid TMD materials, facilitating their differentiation through Raman spectroscopy.

13.
ACS Omega ; 8(44): 41548-41557, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37969985

RESUMEN

We report on the covalent binding of acetonitrile (CH3CN) on Si{111}-(7 × 7) at ∼300 K studied by scanning tunneling microscopy, thermal desorption spectroscopy, and first-principles theoretical calculations. The site-specific study makes it possible to unravel the site-by-site and step-by-step kinetics. A polarized CH3CN prefers to adsorb on the faulted half more frequently compared to on the unfaulted half. Moreover, a molecular CH3CN adsorbs four-times more preferably on the center adatom-rest atom (CEA-REA) pair than on the corner adatom-rest atom (COA-REA) pair. Such site selectivity, the number ratio of reacted-CEA/reacted-COA, depends on the number of reacted adatoms in the half-unit cell. The site selectivity and the resulting reacted-adatom patterns are understood well by considering a simple model. In this simple model, the molecular adsorption probability changes step-by-step and site-by-site with increasing reacted adatoms. Furthermore, our theoretical calculations are overall consistent with the experimental results. The site-selectivity of the adsorption of CH3CN on Si{111}-(7 × 7) is explained well by the chemical reactivity depending on the local conformation, the local density of states, and the interaction between polarized adsorbates.

14.
ACS Nano ; 17(21): 21678-21689, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37843425

RESUMEN

In this study, we investigate the thermochemical stability of graphene on the GaN substrate for metal-organic chemical vapor deposition (MOCVD)-based remote epitaxy. Despite excellent physical properties of GaN, making it a compelling choice for high-performance electronic and light-emitting device applications, the challenge of thermochemical decomposition of graphene on a GaN substrate at high temperatures has obstructed the achievement of remote homoepitaxy via MOCVD. Our research uncovers an unexpected stability of graphene on N-polar GaN, thereby enabling the MOCVD-based remote homoepitaxy of N-polar GaN. Our comparative analysis of N- and Ga-polar GaN substrates reveals markedly different outcomes: while a graphene/N-polar GaN substrate produces releasable microcrystals (µCs), a graphene/Ga-polar GaN substrate yields nonreleasable thin films. We attribute this discrepancy to the polarity-dependent thermochemical stability of graphene on the GaN substrate and its subsequent reaction with hydrogen. Evidence obtained from Raman spectroscopy, electron microscopic analyses, and overlayer delamination points to a pronounced thermochemical stability of graphene on N-polar GaN during MOCVD-based remote homoepitaxy. Molecular dynamics simulations, corroborated by experimental data, further substantiate that the thermochemical stability of graphene is reliant on the polarity of GaN, due to different reactions with hydrogen at high temperatures. Based on the N-polar remote homoepitaxy of µCs, the practical application of our findings was demonstrated in fabrication of flexible light-emitting diodes composed of p-n junction µCs with InGaN heterostructures.

15.
Nat Nanotechnol ; 18(5): 464-470, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36941360

RESUMEN

Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III-N and III-V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.

16.
Nanotechnology ; 23(20): 205204, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22544038

RESUMEN

Using spin-polarized density functional theory calculations, we study binding properties of small metal nanoclusters (Cu(13) and Al(13)) onto carbon nanotubes (CNTs). On defect-free CNTs, the binding affinity with the Cu or Al cluster is very weak. When various defects such as vacancies, substitutional nickel defects, and nickel adatoms are introduced in CNTs to increase the binding strength, the binding energies of the metal nanoclusters increase substantially irrespective of types of defects. The effect of the Ni adatom is especially noticeable. Our results propose a method for improving the wettability of metal-CNT complex composites.


Asunto(s)
Nanopartículas del Metal/química , Modelos Químicos , Nanotubos de Carbono/química , Níquel/química , Sitios de Unión , Simulación por Computador
17.
J Chem Phys ; 134(23): 234701, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21702570

RESUMEN

Using density functional theory calculations, we have investigated the interactions between hydrogen molecules and metalloporphyrins. A metal atom, such as Ca or Ti, is introduced for incorporation in the central N(4) cavity. Within local density approximation (generalized gradient approximation), we find that the average binding energy of H(2) to the Ca atom is about 0.25 (0.1) eV/H(2) up to four H(2) molecules, whereas that to the Ti atom is about 0.6 (0.3) eV per H(2) up to two H(2) molecules. Our analysis of orbital hybridization between the inserted metal atom and molecular hydrogen shows that H(2) binds weakly to Ca-porphyrin through a weak electric polarization in dihydrogen, but is strongly hybridized with Ti-porphyrin through the Kubas interaction. The presence of d orbitals in Ti may explain the difference in the interaction types.


Asunto(s)
Calcio/química , Electrones , Hidrógeno/química , Metaloporfirinas/química , Titanio/química , Sitios de Unión , Simulación de Dinámica Molecular
18.
Nanomaterials (Basel) ; 11(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34835724

RESUMEN

Using density functional theory calculations, atomic and electronic structure of defects in monolayer GeS were investigated by focusing on the effects of vacancies and substitutional atoms. We chose group IV or chalcogen elements as substitutional ones, which substitute for Ge or S in GeS. It was found that the bandgap of GeS with substitutional atoms is close to that of pristine GeS, while the bandgap of GeS with Ge or S vacancies was smaller than that of pristine GeS. In terms of formation energy, monolayer GeS with Ge vacancies is more stable than that with S vacancies, and notably GeS with Ge substituted with Sn is most favorable within the range of chemical potential considered. Defects affect the piezoelectric properties depending on vacancies or substitutional atoms. Especially, GeS with substitutional atoms has almost the same piezoelectric stress coefficients eij as pristine GeS while having lower piezoelectric strain coefficients dij  but still much higher than other 2D materials. It is therefore concluded that Sn can effectively heal Ge vacancy in GeS, keeping high piezoelectric strain coefficients.

19.
Sci Rep ; 11(1): 17790, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493752

RESUMEN

The electrical phase transition in van der Waals (vdW) layered materials such as transition-metal dichalcogenides and Bi2Sr2CaCu2O8+x (Bi-2212) high-temperature superconductor has been explored using various techniques, including scanning tunneling and photoemission spectroscopies, and measurements of electrical resistance as a function of temperature. In this study, we develop one useful method to elucidate the electrical phases in vdW layered materials: indium (In)-contacted vdW tunneling spectroscopy for 1T-TaS2, Bi-2212 and 2H-MoS2. We utilized the vdW gap formed at an In/vdW material interface as a tunnel barrier for tunneling spectroscopy. For strongly correlated electron systems such as 1T-TaS2 and Bi-2212, pronounced gap features corresponding to the Mott and superconducting gaps were respectively observed at T = 4 K. We observed a gate dependence of the amplitude of the superconducting gap, which has potential applications in a gate-tunable superconducting device with a SiO2/Si substrate. For In/10 nm-thick 2H-MoS2 devices, differential conductance shoulders at bias voltages of approximately ± 0.45 V were observed, which were attributed to the semiconducting gap. These results show that In-contacted vdW gap tunneling spectroscopy in a fashion of field-effect transistor provides feasible and reliable ways to investigate electronic structures of vdW materials.

20.
ACS Omega ; 5(38): 24179-24185, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015433

RESUMEN

The adsorption of acetonitrile (CH3CN) on Si(111)-(7 × 7) at a room temperature has been investigated using scanning tunneling microscopy (STM) and first-principles calculations. The site-specific information on adsorption enables us to understand the site-by-site and step-by-step adsorption mechanism. From theoretical simulations, the most stable configuration of CH3CN on Si(111)-(7 × 7) is found to be a molecularly chemisorbed CH3CN with the carbon and nitrogen atoms of CN bonded to the rest atom and adatom on the Si surface, respectively. Some chemisorption-induced features in the STM topographic image are assigned based on the theoretical calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA