Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 179(2): 340-354, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585078

RESUMEN

The conversion of force into an electrical cellular signal is mediated by the opening of different types of mechanosensitive ion channels (MSCs), including TREK/TRAAK K2P channels, Piezo1/2, TMEM63/OSCA, and TMC1/2. Mechanoelectrical transduction plays a key role in hearing, balance, touch, and proprioception and is also implicated in the autonomic regulation of blood pressure and breathing. Thus, dysfunction of MSCs is associated with a variety of inherited and acquired disease states. Significant progress has recently been made in identifying these channels, solving their structure, and understanding the gating of both hyperpolarizing and depolarizing MSCs. Besides prototypical activation by membrane tension, additional gating mechanisms involving channel curvature and/or tethered elements are at play.

2.
Cell ; 173(2): 443-455.e12, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576450

RESUMEN

Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.


Asunto(s)
Anemia Hemolítica Congénita/patología , Población Negra/genética , Hidropesía Fetal/patología , Canales Iónicos/genética , Malaria/patología , Alelos , Anemia Hemolítica Congénita/genética , Animales , Deshidratación , Modelos Animales de Enfermedad , Eritrocitos/citología , Eritrocitos/metabolismo , Eliminación de Gen , Genotipo , Humanos , Hidropesía Fetal/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/deficiencia , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales Iónicos/química , Malaria/genética , Malaria/parasitología , Malaria/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/patogenicidad , Linfocitos T/citología , Linfocitos T/metabolismo
3.
Cell ; 139(3): 587-96, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19879844

RESUMEN

Autosomal-dominant polycystic kidney disease, the most frequent monogenic cause of kidney failure, is induced by mutations in the PKD1 or PKD2 genes, encoding polycystins TRPP1 and TRPP2, respectively. Polycystins are proposed to form a flow-sensitive ion channel complex in the primary cilium of both epithelial and endothelial cells. However, how polycystins contribute to cellular mechanosensitivity remains obscure. Here, we show that TRPP2 inhibits stretch-activated ion channels (SACs). This specific effect is reversed by coexpression with TRPP1, indicating that the TRPP1/TRPP2 ratio regulates pressure sensing. Moreover, deletion of TRPP1 in smooth muscle cells reduces SAC activity and the arterial myogenic tone. Inversely, depletion of TRPP2 in TRPP1-deficient arteries rescues both SAC opening and the myogenic response. Finally, we show that TRPP2 interacts with filamin A and demonstrate that this actin crosslinking protein is critical for SAC regulation. This work uncovers a role for polycystins in regulating pressure sensing.


Asunto(s)
Presión , Canales Catiónicos TRPP/metabolismo , Actinas/metabolismo , Animales , Proteínas Contráctiles/metabolismo , Filaminas , Mecanotransducción Celular , Ratones , Proteínas de Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Presorreceptores/metabolismo
4.
Cell Mol Life Sci ; 80(5): 124, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071200

RESUMEN

An inherited gain-of-function variant (E756del) in the mechanosensitive cationic channel PIEZO1 was shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. Yoda1 causes an increase in intracellular calcium associated with rapid echinocytosis that inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. Notably, Yoda1 treatment significantly decreases merozoite attachment and subsequent RBC deformation. Intracellular Na+/K+ imbalance is unrelated to the mechanism of protection, although delayed RBC dehydration observed in the standard parasite culture medium RPMI/albumax further enhances the resistance to malaria conferred by Yoda1. The chemically unrelated Jedi2 PIEZO1 activator similarly causes echinocytosis and RBC dehydration associated with resistance to malaria invasion. Spiky outward membrane projections are anticipated to reduce the effective surface area required for both merozoite attachment and internalization upon pharmacological activation of PIEZO1. Globally, our findings indicate that the loss of the typical biconcave discoid shape of RBCs, together with an altered optimal surface to volume ratio, induced by PIEZO1 pharmacological activation prevent efficient P. falciparum invasion.


Asunto(s)
Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum , Deshidratación/metabolismo , Eritrocitos/metabolismo , Malaria/parasitología , Parásitos/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-26373641

RESUMEN

Piezo1 and Piezo2 are critically required for nonselective cationic mechanosensitive channels in mammalian cells. Within the last 5 years, tremendous progress has been made in understanding the function of Piezo1/2 in embryonic development, physiology, and associated disease states. A recent breakthrough was the discovery of a chemical opener for Piezo1, indicating that mechanosensitive ion channels can be opened independently of mechanical stress. We will review these new exciting findings, which might pave the road for the identification of novel therapeutic strategies.


Asunto(s)
Canales Iónicos/fisiología , Mecanorreceptores/fisiología , Secuencia de Aminoácidos , Humanos , Canales Iónicos/química , Datos de Secuencia Molecular , Nocicepción , Estrés Mecánico , Canales Catiónicos TRPP/fisiología , Tacto
6.
Pflugers Arch ; 468(7): 1197-1206, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27023350

RESUMEN

The collecting duct (CD) is the final segment of the kidney involved in the fine regulation of osmotic and ionic balance. During dehydration, arginine vasopressin (AVP) stimulates the expression and trafficking of aquaporin 2 (AQP2) to the apical membrane of CD principal cells, thereby allowing water reabsorption from the primary urine. Conversely, when the secretion of AVP is lowered, as for instance upon water ingestion or as a consequence of diabetes insipidus, the CD remains water impermeable leading to enhanced diuresis and urine dilution. In addition, an AVP-independent mechanism of urine dilution is also at play when fasting. Piezo1/2 are recently discovered essential components of the non-selective mechanically activated cationic channels. Using quantitative PCR analysis and taking advantage of a ß-galactosidase reporter mouse, we demonstrate that Piezo1 is preferentially expressed in CD principal cells of the inner medulla at the adult stage, unlike Piezo2. Remarkably, siRNAs knock-down or conditional genetic deletion of Piezo1 specifically in renal cells fully suppresses activity of the stretch-activated non-selective cationic channels (SACs). Piezo1 in CD cells is dispensable for urine concentration upon dehydration. However, urinary dilution and decrease in urea concentration following rehydration are both significantly delayed in the absence of Piezo1. Moreover, decreases in urine osmolarity and urea concentration associated with fasting are fully impaired upon Piezo1 deletion in CD cells. Altogether, these findings indicate that Piezo1 is critically required for SAC activity in CD principal cells and is implicated in urinary osmoregulation.


Asunto(s)
Canales Iónicos/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Acuaporina 2/metabolismo , Arginina Vasopresina/farmacología , Línea Celular , Deshidratación/metabolismo , Deshidratación/fisiopatología , Diuresis/fisiología , Túbulos Renales Colectores/efectos de los fármacos , Ratones , Concentración Osmolar , Equilibrio Hidroelectrolítico/efectos de los fármacos
7.
Pflugers Arch ; 468(7): 1151-1160, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27023351

RESUMEN

Human mutations in the X-linked FLNA gene are associated with a remarkably diverse phenotype, including severe arterial morphological anomalies. However, the role for filamin A (FlnA) in vascular cells remains partially understood. We used a smooth muscle (sm)-specific conditional mouse model to delete FlnA at the adult stage, thus avoiding the developmental effects of the knock-out. Inactivation of smFlnA in adult mice significantly lowered blood pressure, together with a decrease in pulse pressure. However, both the aorta and carotid arteries showed a major outward hypertrophic remodeling, resistant to losartan, and normally occurring in hypertensive conditions. Notably, arterial compliance was significantly enhanced in the absence of smFlnA. Moreover, reactivity of thoracic aorta rings to a variety of vasoconstrictors was elevated, while basal contractility in response to KCl depolarization was reduced. Enhanced reactivity to the thromboxane A2 receptor agonist U46619 was fully reversed by the ROCK inhibitor Y27632. We discuss the possibility that a reduction in arterial stiffness upon smFlnA inactivation might cause a compensatory increase in conduit artery diameter for normalization of parietal tension, independently of the ROCK pathway. In conclusion, deletion of smFlnA in adult mice recapitulates the vascular phenotype of human bilateral periventricular nodular heterotopia, culminating in aortic dilatation.


Asunto(s)
Arterias Carótidas/metabolismo , Arterias Carótidas/fisiología , Filaminas/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/fisiología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Arterias Carótidas/efectos de los fármacos , Humanos , Masculino , Ratones , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Fenotipo , Rigidez Vascular/efectos de los fármacos , Rigidez Vascular/fisiología , Vasoconstrictores/farmacología
8.
EMBO J ; 30(17): 3594-606, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21765396

RESUMEN

Members of the K(2P) potassium channel family regulate neuronal excitability and are implicated in pain, anaesthetic responses, thermosensation, neuroprotection, and mood. Unlike other potassium channels, K(2P)s are gated by remarkably diverse stimuli that include chemical, thermal, and mechanical modalities. It has remained unclear whether the various gating inputs act through separate or common channel elements. Here, we show that protons, heat, and pressure affect activity of the prototypical, polymodal K(2P), K(2P)2.1 (KCNK2/TREK-1), at a common molecular gate that comprises elements of the pore-forming segments and the N-terminal end of the M4 transmembrane segment. We further demonstrate that the M4 gating element is conserved among K(2P)s and is employed regardless of whether the gating stimuli are inhibitory or activating. Our results define a unique gating mechanism shared by K(2P) family members and suggest that their diverse sensory properties are achieved by coupling different molecular sensors to a conserved core gating apparatus.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Dominio Poro en Tándem/fisiología , Secuencia de Aminoácidos , Animales , Calor , Ratones , Datos de Secuencia Molecular , Canales de Potasio de Dominio Poro en Tándem/genética , Presión , Protones
9.
EMBO Rep ; 14(12): 1143-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24157948

RESUMEN

Mechanical forces associated with fluid flow and/or circumferential stretch are sensed by renal epithelial cells and contribute to both adaptive or disease states. Non-selective stretch-activated ion channels (SACs), characterized by a lack of inactivation and a remarkably slow deactivation, are active at the basolateral side of renal proximal convoluted tubules. Knockdown of Piezo1 strongly reduces SAC activity in proximal convoluted tubule epithelial cells. Similarly, overexpression of Polycystin-2 (PC2) or, to a greater extent its pathogenic mutant PC2-740X, impairs native SACs. Moreover, PC2 inhibits exogenous Piezo1 SAC activity. PC2 coimmunoprecipitates with Piezo1 and deletion of its N-terminal domain prevents both this interaction and inhibition of SAC activity. These findings indicate that renal SACs depend on Piezo1, but are critically conditioned by PC2.


Asunto(s)
Células Epiteliales/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Canales Catiónicos TRPP/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/fisiología , Túbulos Renales/citología , Mutación , Unión Proteica , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética
10.
EMBO J ; 29(7): 1176-91, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20168298

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C-terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self-oligomerization. Dimerization-defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM-endoplasmic reticulum (ER) junctions but could still function as ER Ca(2+)-release channels. Expression of dimerization-defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C-terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER-localized PC2 channels. Mutations that affect PC2 C-terminal homo- and heteromerization are the likely molecular basis of cyst formation in ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Línea Celular , Dimerización , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Expresión Génica , Humanos , Riñón/patología , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Canales Catiónicos TRPP/genética , Técnicas del Sistema de Dos Híbridos , Pez Cebra/genética
11.
Cell Rep Med ; 4(2): 100944, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787735

RESUMEN

The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training.


Asunto(s)
Sobrepeso , Estado Prediabético , Masculino , Humanos , Proteómica , Ejercicio Físico , Glucosa
12.
Nat Commun ; 13(1): 7838, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539421

RESUMEN

Thyroid hormone (TH) is a thermogenic activator with anti-obesity potential. However, systemic TH administration has no obvious clinical benefits on weight reduction. Herein we selectively delivered triiodothyronine (T3) to adipose tissues by encapsulating T3 in liposomes modified with an adipose homing peptide (PLT3). Systemic T3 administration failed to promote thermogenesis in brown and white adipose tissues (WAT) due to a feedback suppression of sympathetic innervation. PLT3 therapy effectively obviated this feedback suppression on adrenergic inputs, and potently induced browning and thermogenesis of WAT, leading to alleviation of obesity, glucose intolerance, insulin resistance, and fatty liver in obese mice. Furthermore, PLT3 was much more effective than systemic T3 therapy in reducing hypercholesterolemia and atherosclerosis in apoE-deficient mice. These findings uncover WAT as a viable target mediating the therapeutic benefits of TH and provide a safe and efficient therapeutic strategy for obesity and its complications by delivering TH to adipose tissue.


Asunto(s)
Aterosclerosis , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ratones , Animales , Triyodotironina/metabolismo , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Hormonas Tiroideas/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Aterosclerosis/metabolismo , Termogénesis , Ratones Endogámicos C57BL
13.
Lab Invest ; 91(1): 24-32, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20856231

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a multisystem disorder characterized by renal, hepatic and pancreatic cyst formation and cardiovascular complications. The condition is caused by mutations in the PKD1 or PKD2 gene. In mice with reduced expression of Pkd1, dissecting aneurysms with prominent media thickening have been seen. To study the effect of selective disruption of Pkd1 in vascular smooth muscle cells (SMCs), we have generated mice in which a floxed part of the Pkd1 gene was deleted by Cre under the control of the SM22 promotor (SM22-Pkd1(del/del) mice). Cre activity was confirmed by X-gal staining using lacZ expressing Cre reporter mice (R26R), and quantitative PCR indicated that in the aorta Pkd1 gene expression was strongly reduced, whereas Pkd2 levels remained unaltered. Histopathological analysis revealed cyst formation in pancreas, liver and kidneys as the result of extravascular Cre activity in pancreatic ducts, bile ducts and in the glomerular Bowman's capsule. Remarkably, we did not find any spontaneous gross structural blood vessel abnormalities in mice with somatic Pkd1 gene disruption in SMCs or simultaneous disruption of Pkd1 in SMCs and endothelial cells (ECs). Extensive isometric myographic analysis of the aorta did not reveal differences in response to KCl, acetylcholine, phenylephrin or serotonin, except for a significant increase in contractility induced by phenylephrin on arteries from 40 weeks old Pkd1(del/+) germ-line mice. However, SM22-Pkd1(del/del) mice showed significantly reduced decrease in heart rate on angiotensin II-induced hypertension. The present findings further demonstrate in vivo, that adaptation to hypertension is altered in SM22-Pkd1(del/del) mice.


Asunto(s)
Hipertensión/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiopatología , Presión Sanguínea , Células Endoteliales/metabolismo , Femenino , Frecuencia Cardíaca , Hipertensión/genética , Hipertensión/fisiopatología , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/citología , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales Catiónicos TRPP/genética
14.
Cell Rep ; 37(9): 110070, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852225

RESUMEN

Mechanoelectrical transduction is mediated by the opening of different types of force-sensitive ion channels, including Piezo1/2 and the TREK/TRAAK K2P channels. Piezo1 curves the membrane locally into an inverted dome that reversibly flattens in response to force application. Moreover, Piezo1 forms numerous preferential interactions with various membrane lipids, including cholesterol. Whether this structural architecture influences the functionality of neighboring membrane proteins is unknown. Here, we show that Piezo1/2 increase TREK/TRAAK current amplitude, slow down activation/deactivation, and remove inactivation upon mechanical stimulation. These findings are consistent with a mechanism whereby Piezo1/2 cause a local depletion of membrane cholesterol associated with a prestress of TREK/TRAAK channels. This regulation occurs in mouse fibroblasts between endogenous Piezo1 and TREK-1/2, both channel types acting in concert to delay wound healing. In conclusion, we demonstrate a community effect between different structural and functional classes of mechanosensitive ion channels.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/fisiología , Mecanotransducción Celular , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Colesterol/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Encía/citología , Encía/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio de Dominio Poro en Tándem/genética
15.
J Mol Cell Cardiol ; 48(1): 83-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19345226

RESUMEN

Despite the central physiological importance of cardiovascular mechanotransduction, the molecular identities of the sensors and the signaling pathways have long remained elusive. Indeed, how pressure is transduced into cellular excitation has only recently started to emerge. In both arterial and cardiac myocytes, the diacylglycerol-sensitive canonical transient receptor potential (TRPC) subunits are proposed to underlie the stretch-activated depolarizing cation channels. An indirect mechanism of activation through a ligand-independent conformational switch of Gq-coupled receptors by mechanical stress is invoked. Such a mechanism involving the angiotensin type 1 receptor and TRPC6 is proposed to trigger the arterial myogenic response to intraluminal pressure. TRPC6 is also involved in load-induced cardiac hypertrophy. In this review, we will focus on the molecular basis of pressure sensing in the cardiovascular system and associated disease states.


Asunto(s)
Sistema Cardiovascular/metabolismo , Mecanorreceptores/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Diglicéridos/metabolismo , Humanos , Mecanorreceptores/química , Mecanotransducción Celular/fisiología , Modelos Biológicos , Canales Catiónicos TRPC/química
17.
Pflugers Arch ; 460(3): 571-81, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20490539

RESUMEN

Mechano-gated ion channels play a key physiological role in cardiac, arterial, and skeletal myocytes. For instance, opening of the non-selective stretch-activated cation channels in smooth muscle cells is involved in the pressure-dependent myogenic constriction of resistance arteries. These channels are also implicated in major pathologies, including cardiac hypertrophy or Duchenne muscular dystrophy. Seminal work in prokaryotes and invertebrates highlighted the role of transient receptor potential (TRP) channels in mechanosensory transduction. In mammals, recent findings have shown that the canonical TRPC1 and TRPC6 channels are key players in muscle mechanotransduction. In the present review, we will focus on the functional properties of TRPC1 and TRPC6 channels, on their mechano-gating, regulation by interacting cytoskeletal and scaffolding proteins, physiological role and implication in associated diseases.


Asunto(s)
Mecanotransducción Celular , Células Musculares/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Arterias/fisiología , Cardiomegalia/fisiopatología , Proteínas del Citoesqueleto/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPP/metabolismo
18.
Nat Commun ; 11(1): 2303, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385276

RESUMEN

White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences.


Asunto(s)
Adipocitos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Canales Iónicos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Calorimetría , Células Cultivadas , Femenino , Factor 1 de Crecimiento de Fibroblastos/genética , Citometría de Flujo , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Insulina/sangre , Interleucina-6/sangre , Canales Iónicos/genética , Masculino , Ratones , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
19.
Trends Neurosci ; 30(11): 573-80, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17945357

RESUMEN

Specialized chemo- and nutrient-sensing cells share a common electrophysiological mechanism by transducing low O(2), high CO(2) and low glucose stimuli into a compensatory cellular response: the closing of background K(+) channels encoded by the K(2P) subunits. Inhibition of the TASK K(2P) channels by extracellular acidosis leads to an increased excitability of brainstem respiratory neurons. Moreover, hypoxic down-modulation of TASK channels is implicated in the activation of glomus cells in the carotid body. Stimulation of both types of cell leads to an enhanced ventilation and to cardiocirculatory adjustments. Differential modulation of TASK channels by acidosis and high glucose alters excitability of the hypothalamic orexin neurons, which influence arousal, food seeking and breathing. These recent results shed light on the role of TASK channels in sensing physiological stimuli.


Asunto(s)
Células Quimiorreceptoras/fisiología , Glucosa/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Activación del Canal Iónico/fisiología , Modelos Biológicos , Oxígeno/metabolismo
20.
Prog Biophys Mol Biol ; 97(2-3): 180-95, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18343483

RESUMEN

Mechano-gated ion channels are implicated in a variety of neurosensory functions ranging from touch sensitivity to hearing. In the heart, rhythm disturbance subsequent to mechanical effects is also associated with the activation of stretch-sensitive ion channels. Arterial autoregulation in response to hemodynamic stimuli, a vital process required for protection against hypertension-induced injury, is similarly dependent on the activity of force-sensitive ion channels. Seminal work in prokaryotes and invertebrates, including the nematode Caenorhabditis elegans and the fruit fly drosophila, greatly helped to identify the molecular basis of volume regulation, hearing and touch sensitivity. In mammals, more recent findings have indicated that members of several structural family of ion channels, namely the transient receptor potential (TRP) channels, the amiloride-sensitive ENaC/ASIC channels and the potassium channels K2P and Kir are involved in cellular mechanotransduction. In the present review, we will focus on the molecular and functional properties of these channel subunits and will emphasize on their role in the pressure-dependent arterial myogenic constriction and the flow-mediated vasodilation.


Asunto(s)
Endotelio Vascular/fisiología , Activación del Canal Iónico/fisiología , Mecanotransducción Celular/fisiología , Canales de Potasio/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Caenorhabditis elegans/fisiología , Calcio/metabolismo , Humanos , Presión , Resistencia al Corte , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA