RESUMEN
BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations.
Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Distrofias Retinianas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Algoritmos , Proteínas del Citoesqueleto , Duplicación de Gen , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Flujo de TrabajoRESUMEN
Although a common cause of disease, copy number variants (CNVs) have not routinely been identified from next-generation sequencing (NGS) data in a clinical context. This study aimed to examine the sensitivity and specificity of a widely used software package, ExomeDepth, to identify CNVs from targeted NGS data sets. We benchmarked the accuracy of CNV detection using ExomeDepth v1.1.6 applied to targeted NGS data sets by comparison to CNV events detected through whole-genome sequencing for 25 individuals and determined the sensitivity and specificity of ExomeDepth applied to these targeted NGS data sets to be 100% and 99.8%, respectively. To define quality assurance metrics for CNV surveillance through ExomeDepth, we undertook simulation of single-exon (n=1000) and multiple-exon heterozygous deletion events (n=1749), determining a sensitivity of 97% (n=2749). We identified that the extent of sequencing coverage, the inter- and intra-sample variability in the depth of sequencing coverage and the composition of analysis regions are all important determinants of successful CNV surveillance through ExomeDepth. We then applied these quality assurance metrics during CNV surveillance for 140 individuals across 12 distinct clinical areas, encompassing over 500 potential rare disease diagnoses. All 140 individuals lacked molecular diagnoses after routine clinical NGS testing, and by application of ExomeDepth, we identified 17 CNVs contributing to the cause of a Mendelian disorder. Our findings support the integration of CNV detection using ExomeDepth v1.1.6 with routine targeted NGS diagnostic services for Mendelian disorders. Implementation of this strategy increases diagnostic yields and enhances clinical care.