Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Exp Child Psychol ; 166: 604-620, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29107883

RESUMEN

Children's development of verbal number skills (i.e., counting abilities and knowledge of the number names) presents a milestone in mathematical development. Different factors such as visuo-spatial and verbal abilities have been discussed as contributing to the development of these foundational skills. To understand the cognitive nature of verbal number skills in young children, the current study assessed the relation of preschoolers' verbal and visuo-spatial abilities to their verbal number skills. In total, 141 children aged 5 or 6 years participated in the current study. Verbal number skills were regressed on vocabulary, phonological awareness and visuo-spatial abilities, and verbal and visuo-spatial working memory in a structural equation model. Only visuo-spatial abilities emerged as a significant predictor of verbal number skills in the estimated model. Our results suggest that visuo-spatial abilities contribute to a larger extent to children's verbal number skills than verbal abilities. From a theoretical point of view, these results suggest a visuo-spatial, rather than a verbal, grounding of verbal number skills. These results are potentially informative for the conception of early mathematics assessments and interventions.


Asunto(s)
Aptitud , Matemática , Aprendizaje Espacial , Navegación Espacial , Aprendizaje Verbal , Vocabulario , Niño , Preescolar , Femenino , Humanos , Masculino , Memoria a Corto Plazo , Solución de Problemas
2.
J Exp Child Psychol ; 116(4): 775-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24055929

RESUMEN

Human adults' numerical representation is spatially oriented; consequently, participants are faster to respond to small/large numerals with their left/right hand, respectively, when doing a binary classification judgment on numbers, known as the SNARC (spatial-numerical association of response codes) effect. Studies on the emergence and development of the SNARC effect remain scarce. The current study introduces an innovative new paradigm based on a simple color judgment of Arabic digits. Using this task, we found a SNARC effect in children as young as 5.5 years. In contrast, when preschool children needed to perform a magnitude judgment task necessitating exact number knowledge, the SNARC effect started to emerge only at 5.8 years. Moreover, the emergence of a magnitude SNARC but not a color SNARC was linked to proficiency with Arabic digits. Our results suggest that access to a spatially oriented approximate magnitude representation from symbolic digits emerges early in ontogenetic development. Exact magnitude judgments, on the other hand, rely on experience with Arabic digits and, thus, necessitate formal or informal schooling to give access to a spatially oriented numerical representation.


Asunto(s)
Formación de Concepto , Discriminación en Psicología , Matemática , Percepción Espacial , Preescolar , Percepción de Color , Femenino , Humanos , Juicio , Masculino , Percepción del Tamaño
3.
Acta Psychol (Amst) ; 221: 103456, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34875445

RESUMEN

Achievement in mathematics has been shown to partially depend on verbal skills. In multilingual educational settings, varying language proficiencies might therefore contribute to differences in mathematics achievement. We explored the relationship between mathematics achievement and language competency in terms of home language and instruction language proficiency in the highly multilingual society of Luxembourg. We focussed on third graders' linguistic and mathematical achievement and used data from the national school monitoring program from two consecutive years to assess the influence of children's language profiles on reading comprehension in German (the instruction language) and mathematics performance. Results were similar for both cohorts. Regression analysis indicated that German reading comprehension was a significant predictor of mathematics achievement when accounting for both home language group and socioeconomic status. Moreover, mediation analysis showed that lower mathematics achievement of students with a home language that is very different from the instruction language relative to the Luxembourgish reference group were significantly mediated by achievement in German reading comprehension. These findings show that differences in mathematics achievement between speakers of a home language that is similar to the instruction language and speakers of distant home languages can be explained by their underachievement in reading comprehension in the instruction language. Possible explanations for varying performance patterns between language groups and solutions are being discussed.


Asunto(s)
Comprensión , Lectura , Logro , Niño , Humanos , Lenguaje , Matemática
4.
Front Psychol ; 9: 1076, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997557

RESUMEN

While numerical skills are fundamental in modern societies, some estimated 5-7% of children suffer from mathematical learning difficulties (MLD) that need to be assessed early to ensure successful remediation. Universally employable diagnostic tools are yet lacking, as current test batteries for basic mathematics assessment are based on verbal instructions. However, prior research has shown that performance in mathematics assessment is often dependent on the testee's proficiency in the language of instruction which might lead to unfair bias in test scores. Furthermore, language-dependent assessment tools produce results that are not easily comparable across countries. Here we present results of a study that aims to develop tasks allowing to test for basic math competence without relying on verbal instructions or task content. We implemented video and animation-based task instructions on touchscreen devices that require no verbal explanation. We administered these experimental tasks to two samples of children attending the first grade of primary school. One group completed the tasks with verbal instructions while another group received video instructions showing a person successfully completing the task. We assessed task comprehension and usability aspects both directly and indirectly. Our results suggest that the non-verbal instructions were generally well understood as the absence of explicit verbal instructions did not influence task performance. Thus we found that it is possible to assess basic math competence without verbal instructions. It also appeared that in some cases a single word in a verbal instruction can lead to the failure of a task that is successfully completed with non-verbal instruction. However, special care must be taken during task design because on rare occasions non-verbal video instructions fail to convey task instructions as clearly as spoken language and thus the latter do not provide a panacea to non-verbal assessment. Nevertheless, our findings provide an encouraging proof of concept for the further development of non-verbal assessment tools for basic math competence.

5.
Front Psychol ; 8: 1746, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29056920

RESUMEN

In the present study, we opted for a longitudinal design and examined rapid automatized naming (RAN) performance from two perspectives. In a first step, we examined the structure of RAN performance from a general cognitive perspective. We investigated whether rapid naming measures (e.g., digit RAN and color RAN) reflect a mainly domain-general factor or domain-specific factors. In a second step, we examined how the best fitting RAN model was related to reading and arithmetic outcomes, assessed several months later. Finally in a third step we took a clinical perspective and investigated specific contributions of RAN measures to reading and arithmetic outcomes. While RAN has emerged as a promising predictor of reading, the relationship between RAN and arithmetic has been less examined in the past. Hundred and twenty-two first graders completed seven RAN tasks, each comprising visually familiar stimuli such as digits, vowels, consonants, dice, finger-numeral configurations, objects, and colors. Four months later the same children completed a range of reading and arithmetic tasks. From a general descriptive perspective, structural equation modeling supports a one-dimensional RAN factor in 6- to -7-year-old children. However, from a clinical perspective, our findings emphasize the specific contributions of RANs. Interestingly, alphanumeric RANs (i.e., vowel RAN) were most promising when predicting reading skills and number-specific RANs (i.e., finger-numeral configuration RAN) were most promising when predicting arithmetic fluency. The implications for clinical and educational practices will be discussed.

6.
Front Psychol ; 5: 272, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24772098

RESUMEN

Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA