Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 36(9): 1261-1278, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28320736

RESUMEN

The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Puntos de Control del Ciclo Celular , Daño del ADN , Reparación del ADN , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN de Plantas/metabolismo
2.
Plant Physiol ; 182(2): 919-932, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818906

RESUMEN

The ErbB-3 BINDING PROTEIN 1 (EBP1) drives growth, but the mechanism of how it acts in plants is little understood. Here, we show that EBP1 expression and protein abundance in Arabidopsis (Arabidopsis thaliana) are predominantly confined to meristematic cells and are induced by sucrose and partially dependent on TARGET OF RAPAMYCIN (TOR) kinase activity. Consistent with being downstream of TOR, silencing of EBP1 restrains, while overexpression promotes, root growth, mostly under sucrose-limiting conditions. Inducible overexpression of RETINOBLASTOMA RELATED (RBR), a sugar-dependent transcriptional repressor of cell proliferation, depletes meristematic activity and causes precocious differentiation, which is attenuated by EBP1. To understand the molecular mechanism, we searched for EBP1- and RBR-interacting proteins by affinity purification and mass spectrometry. In line with the double-stranded RNA-binding activity of EBP1 in human (Homo sapiens) cells, the overwhelming majority of EBP1 interactors are part of ribonucleoprotein complexes regulating many aspects of protein synthesis, including ribosome biogenesis and mRNA translation. We confirmed that EBP1 associates with ribosomes and that EBP1 silencing hinders ribosomal RNA processing. We revealed that RBR also interacts with a set of EBP1-associated nucleolar proteins as well as factors that function in protein translation. This suggests EBP1 and RBR act antagonistically on common processes that determine the capacity for translation to tune meristematic activity in relation to available resources.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Cromatografía de Afinidad , Espectrometría de Masas , Meristema/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Raíces de Plantas/genética , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nature ; 495(7440): 246-50, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23467094

RESUMEN

Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world's most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.


Asunto(s)
Agricultura , Alelos , Variación Genética/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/genética , Aclimatación , Arabidopsis , Cromosomas de las Plantas/genética , Relojes Circadianos/fisiología , Relojes Circadianos/efectos de la radiación , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/efectos de la radiación , Europa (Continente) , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Luz , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/efectos de la radiación , Solanum tuberosum/efectos de la radiación , América del Sur , Factores de Tiempo
4.
EMBO J ; 25(20): 4909-20, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17024182

RESUMEN

Plant organ size shows remarkable uniformity within species indicating strong endogenous control. We have identified a plant growth regulatory gene, functionally and structurally homologous to human EBP1. Plant EBP1 levels are tightly regulated; gene expression is highest in developing organs and correlates with genes involved in ribosome biogenesis and function. EBP1 protein is stabilised by auxin. Elevating or decreasing EBP1 levels in transgenic plants results in a dose-dependent increase or reduction in organ growth, respectively. During early stages of organ development, EBP1 promotes cell proliferation, influences cell-size threshold for division and shortens the period of meristematic activity. In postmitotic cells, it enhances cell expansion. EBP1 is required for expression of cell cycle genes; CyclinD3;1, ribonucleotide reductase 2 and the cyclin-dependent kinase B1;1. The regulation of these genes by EBP1 is dose and auxin dependent and might rely on the effect of EBP1 to reduce RBR1 protein level. We argue that EBP1 is a conserved, dose-dependent regulator of cell growth that is connected to meristematic competence and cell proliferation via regulation of RBR1 level.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Ciclo Celular/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Línea Celular , Humanos , Ácidos Indolacéticos/metabolismo , Meristema/citología , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Solanum tuberosum/citología , Solanum tuberosum/genética
5.
Plant Physiol ; 133(2): 618-29, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12972661

RESUMEN

Gene expression during the potato (Solanum tuberosum) tuber lifecycle was monitored by cDNA-amplified fragment-length polymorphism, and several differentially expressed transcript-derived fragments were isolated. One fragment, named TDFL431, showed high homology to a copper (Cu) chaperone for Cu/zinc superoxide dismutase (CCS). The Ccs protein is responsible for the delivery of Cu to the Cu/zinc superoxide dismutase enzyme. The potato CCS (StCCS) full-length gene was isolated, and its sequence was compared with CCSs from other species. The promoter region of this gene was isolated, fused to the firefly luciferase coding sequence, and used for transformation of potato plants. The highest level of StCCS-luciferase expression was detected in the cortex of stem (like) tissues, such as stem nodes, stolons, and tubers; lower levels were detected in roots and flowers. The StCCS promoter contains regions highly homologous to several plant cis-acting elements. Three of them are related to auxin response, whereas four others are related to response to various stresses. Induction of the StCCS promoter was analyzed on 18 media, differing in hormone, sugar, and Cu content. StCCS expression was induced by auxin, gibberellins (GA4 + 7), fructose, sucrose, and glucose and was inhibited by relatively high concentrations of Cu.


Asunto(s)
Cobre/metabolismo , Chaperonas Moleculares/genética , Regiones Promotoras Genéticas/genética , Solanum tuberosum/genética , Superóxido Dismutasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Humanos , Datos de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Solanum tuberosum/enzimología
6.
Plant Physiol ; 129(4): 1494-506, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12177463

RESUMEN

Non-specific lipid-transfer proteins (nsLTPs) are capable of binding lipid compounds in plant tissues and are coded by the nsLTP genes. Here, we present the analysis of expression of a family of potato (Solanum tuberosum) nsLTP genes that express throughout the developing plant in a highly tissue-specific manner. Three transcript-derived fragments were isolated using an amplified restriction fragment polymorphism-derived technique for RNA fingerprinting that show homology to plant nsLTP genes. These transcript-derived fragments displayed modulated expression profiles related to the development of new tissues, with a peak of transcription around the time of tuberization and just prior to sprout development, at dormancy breakage. In addition, a homologous family of expressed sequence tags was identified whose individual members could be classified according to their tissue specificity. Two subgroups of expressed sequence tags were found to express during tuber life cycle. To study the regulation of potato nsLTP genes, two putative potato nsLTP promoters were isolated and their expression was studied using promoter-marker-gene fusions. The results showed that one of the two promoters directed a highly specific pattern of expression detected in the phloem surrounding the nodes of young plants and in the same tissue of tuber related organs, whereas the second putative promoter showed little tissue or organ specificity. This difference in expression is likely due to a 331-bp insertion present in the tissue-specific promoter.


Asunto(s)
Tallos de la Planta/crecimiento & desarrollo , Solanum tuberosum/genética , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , ADN de Plantas/química , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Hibridación in Situ , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia , Tallos de la Planta/genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , ARN de Planta/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Solanum tuberosum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA