Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 16(5): 725-30, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25663617

RESUMEN

Pathogen detection is an important problem in many areas of medicine and agriculture, which can involve genomic or transcriptomic signatures or small-molecule metabolites. We report a unified, DNA-based sensor architecture capable of isothermal detection of double-stranded DNA targets, single-stranded oligonucleotides, and small molecules. Each sensor contains independent target detection and reporter modules, enabling rapid design. We detected gene variants on plasmids by using a straightforward isothermal denaturation protocol. The sensors were highly specific, even with a randomized DNA background. We achieved a limit of detection of ∼15 pM for single-stranded targets and ∼5 nM for targets on denatured plasmids. By incorporating a blocked aptamer sequence, we also detected small molecules using the same sensor architecture. This work provides a starting point for multiplexed detection of multi-strain pathogens, and disease states caused by genetic variants (e.g., sickle cell anemia).


Asunto(s)
Técnicas Biosensibles , Sondas de ADN/análisis , ADN/análisis , Oligonucleótidos/análisis , Temperatura , ADN/genética , Sondas de ADN/genética , Proteínas Fluorescentes Verdes/análisis , Desnaturalización de Ácido Nucleico , Oligonucleótidos/genética
2.
Angew Chem Int Ed Engl ; 53(28): 7183-7, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24890874

RESUMEN

Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling between DNAzymes was achieved using a structured chimeric substrate (SCS) that releases a downstream activator after cleavage by an upstream DNAzyme. The SCS can be activated by various upstream DNAzymes, can be coupled to DNA strand-displacement devices, and is highly resistant to interference from background DNA. This work enables the rational design of synthetic DNAzyme regulatory networks, with potential applications in biomolecular computing, biodetection, and autonomous theranostics.


Asunto(s)
ADN Catalítico/metabolismo , Transducción de Señal , Técnicas Biosensibles , ADN Catalítico/química , ADN Catalítico/genética , Modelos Moleculares , Hibridación de Ácido Nucleico , Especificidad por Sustrato
3.
PLoS One ; 9(10): e110986, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25347066

RESUMEN

The development of large-scale molecular computational networks is a promising approach to implementing logical decision making at the nanoscale, analogous to cellular signaling and regulatory cascades. DNA strands with catalytic activity (DNAzymes) are one means of systematically constructing molecular computation networks with inherent signal amplification. Linking multiple DNAzymes into a computational circuit requires the design of substrate molecules that allow a signal to be passed from one DNAzyme to another through programmed biochemical interactions. In this paper, we chronicle an iterative design process guided by biophysical and kinetic constraints on the desired reaction pathways and use the resulting substrate design to implement heterogeneous DNAzyme signaling cascades. A key aspect of our design process is the use of secondary structure in the substrate molecule to sequester a downstream effector sequence prior to cleavage by an upstream DNAzyme. Our goal was to develop a concrete substrate molecule design to achieve efficient signal propagation with maximal activation and minimal leakage. We have previously employed the resulting design to develop high-performance DNAzyme-based signaling systems with applications in pathogen detection and autonomous theranostics.


Asunto(s)
ADN Catalítico/química , Ingeniería Genética , Relación Estructura-Actividad Cuantitativa , Biofisica , Catálisis , ADN Catalítico/metabolismo , Conformación de Ácido Nucleico , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA