Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(7): 1519-1535, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185886

RESUMEN

Harmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF-2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF-2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF-2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF-2 knockout (FGF-2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF-2 signalling cascades and DAergic pathways in a region-specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF-2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.


Asunto(s)
Alcoholismo , Área Tegmental Ventral , Ratones , Animales , Área Tegmental Ventral/metabolismo , Neuronas Dopaminérgicas/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Alcoholismo/genética , Alcoholismo/metabolismo , Proteómica , Consumo de Bebidas Alcohólicas
2.
Phytother Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020450

RESUMEN

At the end of the 2019 coronavirus pandemic (COVID-19), highly contagious variants of coronaviruses had emerged. Together with influenza viruses, different variants of the coronavirus currently cause most colds and require appropriate drug treatment. We have investigated the expression of important factors for the replication of these viruses, namely transmembrane protease serine subtype 2 (TMPRSS2), neuropilin1 (NRP1), and angiotensin converting enzyme 2 (ACE2) or tumor necrosis factor-α (TNF-α) after toll like receptor-3 (TLR-3) stimulation using RT-qPCR and flow cytometry (FC) analysis. As model served primary fibroblasts derived from the lung and nasal cavity, as well as epidermal stem cells and fully matured respiratory epithelium. The stimulated cell cultures were treated with pharmaceuticals (Dexamethasone and Enzalutamide) and the outcome was compared with the phytomedicine 1,8-Cineol. The stimulation of TLR3 is sufficient to induce the expression of exactly those targets that were highly expressed in the corresponding culture type, specifically ACE2 and TMPRSS2 in respiratory epithelial stem cells and NRP1 in fibroblast cells. It seems this self-perpetuating cycle of infection-driven upregulation of key viral replication factors by the innate immune system represents an evolutionary advantage for viruses using these transcripts as viral replication factors. Likewise, to the standard pharmaceuticals with proven clinical efficiency, 1,8-Cineol was able to disrupt this self-perpetuating cycle. Considering the minor side effects and negligible pharmacological interactions with other drugs, it is conceivable that an adjuvant or combinatorial therapy with 1,8-Cineol for respiratory diseases caused by corona- or influenza viruses would be beneficial.

3.
BMC Cancer ; 23(1): 47, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639629

RESUMEN

BACKGROUND: New concepts for a more effective anti-cancer therapy are urgently needed. Experimental flaws represent a major counter player of this development and lead to inaccurate and unreproducible data as well as unsuccessful translation of research approaches into clinics. In a previous study we have created epithelial cell cultures from head and neck squamous cell carcinoma (HNSCC) tissue. METHODS: We characterize primary cell populations isolated from human papillomavirus positive HNSCC tissue for their marker expression by RT-qPCR, flow cytometry, and immunofluorescence staining. Their sensitivity to MDM2-inhibition was measured using cell viability assays. RESULTS: Primary HNSCC cell cultures showed the delayed formation of spheroids at higher passages. These spheroids mimicked the morphology and growth characteristics of other established HNSCC spheroid models. However, expression of epithelial and mesenchymal markers could not be detected in these cells despite the presence of the HNSCC stem cell marker aldehyde dehydrogenase 1 family member A1. Instead, strong expression of B- and T-lymphocytes markers was observed. Flow cytometry analysis revealed a heterogeneous mixture of CD3 + /CD25 + T-lymphocytes and CD19 + B-lymphocytes at a ratio of 4:1 at passage 5 and transformed lymphocytes at late passages (≥ passage 12) with CD45 + CD19 + CD20 + , of which around 10 to 20% were CD3 + CD25 + CD56 + . Interestingly, the whole population was FOXP3-positive indicative of regulatory B-cells (Bregs). Expression of transcripts specific for the Epstein-Barr-virus (EBV) was detected to increase in these spheroid cells along late passages, and this population was vulnerable to MDM2 inhibition. HPV + HNSCC cells but not EBV + lymphocytes were detected to engraft into immunodeficient mice. CONCLUSIONS: In this study we present a primary cell culture of EBV-infected tumor-infiltrating B-lymphocytes, which could be used to study the role of these cells in tumor biology in future research projects. Moreover, by describing the detailed characteristics of these cells, we aim to caution other researchers in the HNSCC field to test for EBV-infected lymphocyte contaminations in primary cell cultures ahead of further experiments. Especially researchers who are interested in TIL-based adopted immunotherapy should exclude these cells in their primary tumor models, e.g. by MDM2-inhibitor treatment. BI-12-derived xenograft tumors represent a suitable model for in vivo targeting studies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias de Cabeza y Cuello , Humanos , Ratones , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello , Herpesvirus Humano 4 , Linfocitos , Proliferación Celular , Técnicas de Cultivo de Célula
4.
Sci Rep ; 14(1): 4061, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374370

RESUMEN

Molecular diagnostics is an increasingly important clinical tool, especially in routine sampling. We evaluated two non-invasive methods (oral swabs and mouthwashes) for sampling nucleic acids from the oral/pharyngeal area. We created a workflow from sample collection (n = 59) to RT-qPCR based analysis. The samples were further characterized in terms of their cellular composition as well as the purity, degradation and microbial content of the derived DNA/RNA. We determined the optimal housekeeping genes applicable for these types of samples. The cellular composition indicated that mouthwashes contained more immune cells and bacteria. Even though the protocol was not specifically optimized to extract bacterial RNA it was possible to derive microbial RNA, from both sampling methods. Optimizing the protocol allowed us to generate stable quantities of DNA/RNA. DNA/RNA purity parameters were not significantly different between the two sampling methods. Even though integrity analysis demonstrated a high level of degradation of RNA, corresponding parameters confirmed their sequencing potential. RT-qPCR analysis determined TATA-Box Binding Protein as the most favorable housekeeping gene. In summary, we have developed a robust method suitable for multiple downstream diagnostic techniques. This protocol can be used as a foundation for further research endeavors focusing on developing molecular diagnostics for the oropharyngeal cavity.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/genética , Antisépticos Bucales , Patología Molecular , ARN/genética , ADN
5.
Cell Death Dis ; 15(7): 517, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030166

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease, and death rates have remained at approximately 50% for decades. New tumor-targeting strategies are desperately needed, and a previous report indicated the triggered differentiation of HPV-negative HNSCC cells to confer therapeutic benefits. Using patient-derived tumor cells, we created a similar HNSCC differentiation model of HPV+ tumor cells from two patients. We observed a loss of malignant characteristics in differentiating cell culture conditions, including irregularly enlarged cell morphology, cell cycle arrest with downregulation of Ki67, and reduced cell viability. RNA-Seq showed myocyte-like differentiation with upregulation of markers of myofibril assembly. Immunofluorescence staining of differentiated and undifferentiated primary HPV+ HNSCC cells confirmed an upregulation of these markers and the formation of parallel actin fibers reminiscent of myoblast-lineage cells. Moreover, immunofluorescence of HPV+ tumor tissue revealed areas of cells co-expressing the identified markers of myofibril assembly, HPV surrogate marker p16, and stress-associated basal keratinocyte marker KRT17, indicating that the observed myocyte-like in vitro differentiation occurs in human tissue. We are the first to report that carcinoma cells can undergo a triggered myocyte-like differentiation, and our study suggests that the targeted differentiation of HPV+ HNSCCs might be therapeutically valuable.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/virología , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/metabolismo , Linaje de la Célula , Células Musculares/virología , Células Musculares/metabolismo , Células Musculares/patología , Papillomaviridae/fisiología , Línea Celular Tumoral , Virus del Papiloma Humano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA