Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(11): e1011837, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019895

RESUMEN

Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.


Asunto(s)
Coriomeningitis Linfocítica , Malaria Cerebral , Parásitos , Ratones , Animales , Neuropilina-1 , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica , Linfocitos T CD8-positivos/patología , Ratones Endogámicos C57BL
2.
Immunology ; 148(2): 197-205, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26932746

RESUMEN

Recently, we demonstrated elevated numbers of CD4(+) Foxp3(+) regulatory T (Treg) cells in Plasmodium yoelii-infected mice contributing to the regulation of anti-malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus-derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3(+) Treg cells expressing neuropilin-1 (Nrp-1) decreased at early time-points during P. yoelii infection, whereas percentages of Helios(+) Foxp3(+) Treg cells remained unchanged. Both Foxp3(+) Nrp-1(+) and Foxp3(+) Nrp-1(-) Treg cells from P. yoelii-infected mice exhibited a similar T-cell receptor Vß chain usage and methylation pattern in the Treg-specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3(-) T cells adoptively transferred to P. yoelii-infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3(+) Treg cells.


Asunto(s)
Proliferación Celular , Activación de Linfocitos , Malaria/inmunología , Plasmodium yoelii/inmunología , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Metilación de ADN , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Neuropilina-1/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
3.
Thyroid ; 32(3): 283-293, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779257

RESUMEN

Background: Graves' orbitopathy (GO) is an autoimmune-driven manifestation of Graves' disease (GD) where pathogenic autoantibodies to the thyrotropin receptor (TSHR) activate orbital fibroblasts/preadipocytes in the orbital tissue to induce inflammation and extracellular matrix deposition. Since there are significant limitations to study immunological and proinflammatory mediator expression in early and during disease progression in GO patients, we used our experimental mouse model to elucidate early pathogenic processes. Methods: We have developed a robust mouse model of GD/GO induced by electroporation immunization of plasmid encoding human TSHR A-subunit, comprising multiple injections over a course of 15 weeks to fully recapitulate the orbital pathology. In this study, we investigated kinetics of GO development in the model by serial analyses of immunological and cellular parameters during course of orbital inflammation. Results: Pathogenic anti-TSHR antibodies with thyroid-stimulating properties developed early after the second immunization step with concomitant induction of hyperthyroidism. Examination of orbital tissue showed an early wave of macrophage infiltration followed subsequently by CD3+ T cells into the orbital tissue. Examination of antigen-specific T cell activity using recombinant human A-subunit protein showed high CD8+ T cell proliferation during this early phase of disease onset, whereas effector CD4+ T cells and CD25+FOXP3+ regulatory T cells (Tregs) were downregulated. The early phase of disease was also characterized by abundant presence of proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Moreover, as the disease progressed, there was significant increase in browning of orbital fat tissue, which may be dependent on the proinflammatory milieu and/or the increased thyroid hormone levels during the established hyperthyroid status. Conclusions: This work revealed early infiltration of macrophages in the orbital region and induction of pathogenic anti-TSHR antibodies during disease onset in the model. This was followed subsequently by influx of CD8+ T cells specific for TSHR coupled with reduction in Tregs and substantial increase in brown adipose tissue. These new insights into the development of orbital inflammation in the model have implications for testing new therapeutic regimens by targeting macrophage function during early phases of orbital inflammation in the model.


Asunto(s)
Enfermedad de Graves , Oftalmopatía de Graves , Tejido Adiposo , Animales , Antígenos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Oftalmopatía de Graves/metabolismo , Humanos , Inflamación , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Receptores de Tirotropina , Tirotropina
4.
Elife ; 112022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094170

RESUMEN

Acid ceramidase (Ac) is part of the sphingolipid metabolism and responsible for the degradation of ceramide. As bioactive molecule, ceramide is involved in the regulation of many cellular processes. However, the impact of cell-intrinsic Ac activity and ceramide on the course of Plasmodium infection remains elusive. Here, we use Ac-deficient mice with ubiquitously increased ceramide levels to elucidate the role of endogenous Ac activity in a murine malaria model. Interestingly, ablation of Ac leads to alleviated parasitemia associated with decreased T cell responses in the early phase of Plasmodium yoelii infection. Mechanistically, we identified dysregulated erythropoiesis with reduced numbers of reticulocytes, the preferred host cells of P. yoelii, in Ac-deficient mice. Furthermore, we demonstrate that administration of the Ac inhibitor carmofur to wildtype mice has similar effects on P. yoelii infection and erythropoiesis. Notably, therapeutic carmofur treatment after manifestation of P. yoelii infection is efficient in reducing parasitemia. Hence, our results provide evidence for the involvement of Ac and ceramide in controlling P. yoelii infection by regulating red blood cell development.


Asunto(s)
Malaria , Plasmodium yoelii , Ceramidasa Ácida , Animales , Ceramidas/farmacología , Eritropoyesis , Malaria/tratamiento farmacológico , Ratones , Parasitemia
5.
Elife ; 112022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36426850

RESUMEN

Acid sphingomyelinase (Asm) and acid ceramidase (Ac) are parts of the sphingolipid metabolism. Asm hydrolyzes sphingomyelin to ceramide, which is further metabolized to sphingosine by Ac. Ceramide generates ceramide-enriched platforms that are involved in receptor clustering within cellular membranes. However, the impact of cell-intrinsic ceramide on T cell function is not well characterized. By using T cell-specific Asm- or Ac-deficient mice, with reduced or elevated ceramide levels in T cells, we identified ceramide to play a crucial role in T cell function in vitro and in vivo. T cell-specific ablation of Asm in Smpd1fl/fl/Cd4cre/+ (Asm/CD4cre) mice resulted in enhanced tumor progression associated with impaired T cell responses, whereas Asah1fl/fl/Cd4cre/+ (Ac/CD4cre) mice showed reduced tumor growth rates and elevated T cell activation compared to the respective controls upon tumor transplantation. Further in vitro analysis revealed that decreased ceramide content supports CD4+ regulatory T cell differentiation and interferes with cytotoxic activity of CD8+ T cells. In contrast, elevated ceramide concentration in CD8+ T cells from Ac/CD4cre mice was associated with enhanced cytotoxic activity. Strikingly, ceramide co-localized with the T cell receptor (TCR) and CD3 in the membrane of stimulated T cells and phosphorylation of TCR signaling molecules was elevated in Ac-deficient T cells. Hence, our results indicate that modulation of ceramide levels, by interfering with the Asm or Ac activity has an effect on T cell differentiation and function and might therefore represent a novel therapeutic strategy for the treatment of T cell-dependent diseases such as tumorigenesis.


Asunto(s)
Ceramidas , Melanoma , Animales , Ratones , Ceramidas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Esfingosina/metabolismo , Receptores de Antígenos de Linfocitos T
6.
Front Immunol ; 10: 1225, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214184

RESUMEN

The enzyme acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and is thereby involved in several cellular processes such as differentiation, proliferation, and apoptosis in different cell types. However, the function of ASM in T cells is still not well characterized. Here, we used T cell-specific ASM overexpressing mice (t-ASM/CD4cre) to clarify the impact of cell-intrinsic ASM activity on T cell function in vitro and in vivo. We showed that t-ASM/CD4cre mice exhibit decreased frequencies of Foxp3+ T regulatory cells (Tregs) within the spleen. Enforced T cell-specific ASM expression resulted in less efficient induction of Tregs and promoted differentiation of CD4+CD25- naïve T cells into IFN-γ producing Th1 cells in vitro. Further analysis revealed that ASM-overexpressing T cells from t-ASM/CD4cre mice show elevated T cell receptor (TCR) signaling activity accompanied with increased proliferation upon stimulation in vitro. Plasmodium yoelii infection of t-ASM/CD4cre mice resulted in enhanced T cell activation and was associated with reduced parasitemia in comparison to infected control mice. Hence, our results provide evidence that ASM activity modulates T cell function in vitro and in vivo.


Asunto(s)
Malaria/inmunología , Plasmodium yoelii/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Factores de Transcripción Forkhead/metabolismo , Humanos , Activación de Linfocitos , Ratones , Parasitemia , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Regulación hacia Arriba
7.
Thyroid ; 29(9): 1286-1301, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31237525

RESUMEN

Graves' disease (GD) and Graves' orbitopathy are associated with stimulating thyrotropin receptor (TSHR) autoantibodies and autoreactive T cells. Recent in vitro studies suggested that sphingosine-1-phosphate (S1P) signaling is involved in the pathogenesis of orbitopathy. In this study, we explored the immune modulatory potential of S1P receptor antagonist fingolimod in a murine model for GD. Fingolimod was orally administered preventively during disease onset or therapeutically after disease onset. Administration of fingolimod during disease onset completely prevented the formation of TSHR-stimulating autoantibodies. Intervention after disease onset rarely reduced TSHR-stimulating autoantibodies and blocking autoantibodies were induced in some animals. Consequently, autoimmune hyperthyroidism characterized by elevated serum thyroxin levels, hyperplastic thyroid morphology accompanied by T cell infiltration, weight gain, enhanced body temperature, and tachycardia did not manifest preventively and showed milder manifestation in therapeutically treated animals. Importantly, examination of orbital tissue showed significant amelioration of orbitopathy manifestations through reduction of T cell infiltration, adipogenesis, and hyaluronan deposition. Autoimmune hyperthyroidism and orbitopathy were accompanied by changes in peripheral and splenic T cell proportions with high CD3+, CD4+, and CD8+ T cells. Activated T cells CD4+CD25+ were elevated whereas regulatory T cells CD4+Foxp3+ cells remained unchanged in spleens. Fingolimod decreased elevated T cell levels and increased CD4+CD25+Foxp3+ regulatory T cell populations. Analysis of total disease outcome revealed that treatment during disease onset protected animals against autoimmune hyperthyroidism and orbitopathy. Of note, therapeutic intervention after disease onset suppressed disease in half of the animals and in the other half disease remained at mild stages. The results of this study support a clinical trial to investigate the immunologic and clinical benefits of early treatment with S1P-based drugs in GD.


Asunto(s)
Autoanticuerpos/biosíntesis , Clorhidrato de Fingolimod/uso terapéutico , Enfermedad de Graves/tratamiento farmacológico , Oftalmopatía de Graves/tratamiento farmacológico , Receptores de Tirotropina/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Femenino , Enfermedad de Graves/inmunología , Oftalmopatía de Graves/inmunología , Ratones , Ratones Endogámicos BALB C , Linfocitos T Reguladores/efectos de los fármacos
8.
Front Immunol ; 10: 1386, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275322

RESUMEN

Inflammatory diseases of the gastrointestinal tract are emerging as a global problem with increased evidence and prevalence in numerous countries. A dysregulated sphingolipid metabolism occurs in patients with ulcerative colitis and is discussed to contribute to its pathogenesis. In the present study, we determined the impact of acid sphingomyelinase (Asm), which catalyzes the hydrolysis of sphingomyelin to ceramide, on the course of Citrobacter (C.) rodentium-driven colitis. C. rodentium is an enteric pathogen and induces colonic inflammation very similar to the pathology in patients with ulcerative colitis. We found that mice with Asm deficiency or Asm inhibition were strongly susceptible to C. rodentium infection. These mice showed increased levels of C. rodentium in the feces and were prone to bacterial spreading to the systemic organs. In addition, mice lacking Asm activity showed an uncontrolled inflammatory Th1 and Th17 response, which was accompanied by a stronger colonic pathology compared to infected wild type mice. These findings identified Asm as an essential regulator of mucosal immunity to the enteric pathogen C. rodentium.


Asunto(s)
Colitis/etiología , Colitis/metabolismo , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Esfingomielina Fosfodiesterasa/metabolismo , Amitriptilina/farmacología , Animales , Biomarcadores , Citrobacter rodentium/inmunología , Colitis/patología , Modelos Animales de Enfermedad , Resistencia a la Enfermedad/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Activación Enzimática/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/metabolismo
9.
Invest Ophthalmol Vis Sci ; 59(13): 5391-5397, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452592

RESUMEN

Purpose: Graves' orbitopathy (GO) is an autoimmune orbital disorder associated with Graves' disease caused by thyrotropin receptor autoantibodies. Orbital fibroblasts (OFs) and CD40 play a key role in disease pathogenesis. The bioactive lipid sphingosine-1-phosphate (S1P) has been implicated in promoting adipogenesis, fibrosis, and inflammation in OFs. We investigated the role of CD40 signaling in inducing S1P activity in orbital inflammation. Methods: OFs and T cells were derived from GO patients and healthy control (Ctl) persons. S1P abundance in orbital tissues was evaluated by immunofluorescence. OFs were stimulated with CD40 ligand and S1P levels were determined by ELISA. Further, activities of acid sphingomyelinase (ASM), acid ceramidase, and sphingosine kinase were measured by ultraperformance liquid chromatography. Sphingosine and ceramide contents were analyzed by mass spectrometry. Finally, the role for S1P in T-cell attraction was investigated by T-cell migration assays. Results: GO orbital tissue showed elevated amounts of S1P as compared to control samples. Stimulation of CD40 induced S1P expression in GO-derived OFs, while Ctl-OFs remained unaffected. A significant increase of ASM and sphingosine kinase activities, as well as lipid formation, was observed in GO-derived OFs. Migration assay of T cells in the presence of SphK inhibitor revealed that S1P released by GO-OFs attracted T cells for migration. Conclusions: The results demonstrated that CD40 ligand stimulates GO fibroblast to produce S1P, which is a driving force for T-cell migration. The results support the use of S1P receptor signaling modulators in GO management.


Asunto(s)
Antígenos CD40/fisiología , Fibroblastos/metabolismo , Oftalmopatía de Graves/enzimología , Lisofosfolípidos/metabolismo , Órbita/metabolismo , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Linfocitos T/inmunología , Ceramidasa Ácida/metabolismo , Ligando de CD40/fisiología , Movimiento Celular/fisiología , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente Indirecta , Oftalmopatía de Graves/inmunología , Humanos , Inflamación/enzimología , Inflamación/inmunología , Espectrometría de Masas , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal/fisiología , Esfingomielina Fosfodiesterasa/metabolismo , Esfingosina/metabolismo
10.
Front Immunol ; 8: 152, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293237

RESUMEN

The cytokine IL-10 plays a crucial role during malaria infection by counteracting the pro-inflammatory immune response. We and others demonstrated that Plasmodium yoelii infection results in enhanced IL-10 production in CD4+ T cells accompanied by the induction of an immunosuppressive phenotype. However, it is unclear whether this is a direct effect caused by the parasite or an indirect consequence due to T cell activation by IL-10-producing antigen-presenting cells. Here, we demonstrate that CD11c+CD11b+CD8- dendritic cells (DCs) produce elevated levels of IL-10 after P. yoelii infection of BALB/c mice. DC-specific ablation of IL-10 in P. yoelii-infected IL-10flox/flox/CD11c-cre mice resulted in increased IFN-γ and TNF-α production with no effect on MHC-II, CD80, or CD86 expression in CD11c+ DCs. Accordingly, DC-specific ablation of IL-10 exacerbated systemic IFN-γ and IL-12 production without altering P. yoelii blood stage progression. Strikingly, DC-specific inactivation of IL-10 in P. yoelii-infected mice interfered with the induction of IL-10-producing CD4+ T cells while raising the frequency of IFN-γ-secreting CD4+ T cells. These results suggest that P. yoelii infection promotes IL-10 production in DCs, which in turn dampens secretion of pro-inflammatory cytokines and supports the induction of CD4+IL-10+ T cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA