Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(7): 1405-1419, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38906146

RESUMEN

Genome-wide association studies (GWASs) have identified numerous lung cancer risk-associated loci. However, decoding molecular mechanisms of these associations is challenging since most of these genetic variants are non-protein-coding with unknown function. Here, we implemented massively parallel reporter assays (MPRAs) to simultaneously measure the allelic transcriptional activity of risk-associated variants. We tested 2,245 variants at 42 loci from 3 recent GWASs in East Asian and European populations in the context of two major lung cancer histological types and exposure to benzo(a)pyrene. This MPRA approach identified one or more variants (median 11 variants) with significant effects on transcriptional activity at 88% of GWAS loci. Multimodal integration of lung-specific epigenomic data demonstrated that 63% of the loci harbored multiple potentially functional variants in linkage disequilibrium. While 22% of the significant variants showed allelic effects in both A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cell lines, a subset of the functional variants displayed a significant cell-type interaction. Transcription factor analyses nominated potential regulators of the functional variants, including those with cell-type-specific expression and those predicted to bind multiple potentially functional variants across the GWAS loci. Linking functional variants to target genes based on four complementary approaches identified candidate susceptibility genes, including those affecting lung cancer cell growth. CRISPR interference of the top functional variant at 20q13.33 validated variant-to-gene connections, including RTEL1, SOX18, and ARFRP1. Our data provide a comprehensive functional analysis of lung cancer GWAS loci and help elucidate the molecular basis of heterogeneity and polygenicity underlying lung cancer susceptibility.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Pulmonares , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Desequilibrio de Ligamiento , Herencia Multifactorial/genética , Línea Celular Tumoral , Alelos , Células A549
2.
Am J Hum Genet ; 108(10): 1852-1865, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34559995

RESUMEN

Genome-wide association studies (GWASs) have discovered 20 risk loci in the human genome where germline variants associate with risk of pancreatic ductal adenocarcinoma (PDAC) in populations of European ancestry. Here, we fine-mapped one such locus on chr16q23.1 (rs72802365, p = 2.51 × 10-17, OR = 1.36, 95% CI = 1.31-1.40) and identified colocalization (PP = 0.87) with aberrant exon 5-7 CTRB2 splicing in pancreatic tissues (pGTEx = 1.40 × 10-69, ßGTEx = 1.99; pLTG = 1.02 × 10-30, ßLTG = 1.99). Imputation of a 584 bp structural variant overlapping exon 6 of CTRB2 into the GWAS datasets resulted in a highly significant association with pancreatic cancer risk (p = 2.83 × 10-16, OR = 1.36, 95% CI = 1.31-1.42), indicating that it may underlie this signal. Exon skipping attributable to the deletion (risk) allele introduces a premature stop codon in exon 7 of CTRB2, yielding a truncated chymotrypsinogen B2 protein that lacks chymotrypsin activity, is poorly secreted, and accumulates intracellularly in the endoplasmic reticulum (ER). We propose that intracellular accumulation of a nonfunctional chymotrypsinogen B2 protein leads to ER stress and pancreatic inflammation, which may explain the increased pancreatic cancer risk in carriers of CTRB2 exon 6 deletion alleles.


Asunto(s)
Quimotripsina/genética , Neoplasias Pancreáticas/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Eliminación de Secuencia , Estudios de Casos y Controles , Quimotripsina/antagonistas & inhibidores , Quimotripsina/metabolismo , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo
3.
PLoS Comput Biol ; 17(11): e1009563, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34793442

RESUMEN

Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide association study (GWAS) signals but most GWAS signals still lack compelling explanatory genes. We have leveraged an adipose-specific gene regulatory network to infer expression regulator activities and phenotypic master regulators (MRs), which were used to detect activity QTLs (aQTLs) at cardiometabolic trait GWAS loci. Regulator activities were inferred with the VIPER algorithm that integrates enrichment of expected expression changes among a regulator's target genes with confidence in their regulator-target network interactions and target overlap between different regulators (i.e., pleiotropy). Phenotypic MRs were identified as those regulators whose activities were most important in predicting their respective phenotypes using random forest modeling. While eQTLs were typically more significant than aQTLs in cis, the opposite was true among candidate MRs in trans. Several GWAS loci colocalized with MR trans-eQTLs/aQTLs in the absence of colocalized cis-QTLs. Intriguingly, at the 1p36.1 BMI GWAS locus the EPHB2 cis-aQTL was stronger than its cis-eQTL and colocalized with the GWAS signal and 35 BMI MR trans-aQTLs, suggesting the GWAS signal may be mediated by effects on EPHB2 activity and its downstream effects on a network of BMI MRs. These MR and aQTL analyses represent systems genetic methods that may be broadly applied to supplement standard eQTL analyses for suggesting molecular effects mediating GWAS signals.


Asunto(s)
Redes Reguladoras de Genes , Miocardio/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Receptor EphB2/genética , Grasa Subcutánea/metabolismo , Transcriptoma
4.
J Ultrasound Med ; 39(4): 749-759, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31647137

RESUMEN

OBJECTIVES: Steatosis, nonalcoholic steatohepatitis (NASH), and fibrosis/cirrhosis represent a spectrum of fatty liver disease. The ultrasound fatty liver indicator (US-FLI) evaluates ultrasound (US) features to identify stages of fatty liver disease. We hypothesized that US features could be independent predictors of NASH and that the US-FLI differentiates steatosis from NASH in the average obese population. METHODS: A retrospective analysis of 208 patients with normal (n = 14), steatotic (n = 89), and NASH (n = 105) livers was performed. Liver/biliary disease and a history of alcohol intake were excluded. Ultrasound metrics included liver-kidney contrast, posterior attenuation, vessel blurring, difficulty visualizing the gallbladder wall, difficulty visualizing the diaphragm, and areas of focal fatty sparing. A statistical comparison of the 3 groups as well as fibrosis stage I and II/III NASH groups was performed. Logistic regression identified independent predictors of NASH. RESULTS: Gallbladder wall visualization and vessel blurring were different between the steatosis and NASH groups (P ≤ .01). Gallbladder wall visualization was specific for NASH (89%), and vessel blurring was sensitive for NASH (93%). A US-FLI score of 4 or lower suggested the absence of NASH (negative predictive value, 88%; sensitivity, 91%). Logistic regression revealed vessel blurring as the only US predictor of NASH (P ≤ .01). However, the area under the curve (0.649) showed poor performance in differentiating steatosis from NASH when the US-FLI score was 5 or higher. CONCLUSIONS: Our data suggest that the US-FLI may differentiate steatosis from NASH in the average obese population. Vessel blurring and poor gallbladder wall visualization were the most important metrics. Identification of NASH was enhanced by including the US-FLI score with vessel blurring.


Asunto(s)
Hígado Graso/complicaciones , Hígado Graso/diagnóstico por imagen , Obesidad/complicaciones , Ultrasonografía/métodos , Adulto , Anciano , Diagnóstico Diferencial , Femenino , Humanos , Hígado/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
5.
Gut ; 67(3): 521-533, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28634199

RESUMEN

OBJECTIVE: To elucidate the genetic architecture of gene expression in pancreatic tissues. DESIGN: We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. RESULTS: We identified 38 615 cis-eQTLs (in 484 genes) in histologically normal tissues and 39 713 cis-eQTL (in 237 genes) in tumour-derived tissues (false discovery rate <0.1), with the strongest effects seen near transcriptional start sites. Approximately 23% and 42% of genes with significant cis-eQTLs appeared to be specific for tumour-derived and normal-derived tissues, respectively. Significant enrichment of cis-eQTL variants was noted in non-coding regulatory regions, in particular for pancreatic tissues (1.53-fold to 3.12-fold, p≤0.0001), indicating tissue-specific functional relevance. A common pancreatic cancer risk locus on 9q34.2 (rs687289) was associated with ABO expression in histologically normal (p=5.8×10-8) and tumour-derived (p=8.3×10-5) tissues. The high linkage disequilibrium between this variant and the O blood group generating deletion variant in ABO (exon 6) suggested that nonsense-mediated decay (NMD) of the 'O' mRNA might explain this finding. However, knockdown of crucial NMD regulators did not influence decay of the ABO 'O' mRNA, indicating that a gene regulatory element influenced by pancreatic cancer risk alleles may underlie the eQTL. CONCLUSIONS: We have identified cis-eQTLs representing potential functional regulatory variants in the pancreas and generated a rich data set for further studies on gene expression and its regulation in pancreatic tissues.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/genética , Expresión Génica , Páncreas , Neoplasias Pancreáticas/genética , Sitios de Carácter Cuantitativo , ARN Neoplásico/análisis , Transcriptoma , Alelos , Cromosomas Humanos Par 9 , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN
6.
Hum Mol Genet ; 25(21): 4726-4738, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28172817

RESUMEN

Genome-wide association studies (GWAS) have identified multiple common susceptibility loci for pancreatic cancer. Here we report fine-mapping and functional analysis of one such locus residing in a 610 kb gene desert on chr13q22.1 (marked by rs9543325). The closest candidate genes, KLF5, KLF12, PIBF1, DIS3 and BORA, range in distance from 265-586 kb. Sequencing three sub-regions containing the top ranked SNPs by imputation P-value revealed a 30 bp insertion/deletion (indel) variant that was significantly associated with pancreatic cancer risk (rs386772267, P = 2.30 × 10-11, OR = 1.22, 95% CI 1.15-1.28) and highly correlated to rs9543325 (r2 = 0.97 in the 1000 Genomes EUR population). This indel was the most significant cis-eQTL variant in a set of 222 histologically normal pancreatic tissue samples (ß = 0.26, P = 0.004), with the insertion (risk-increasing) allele associated with reduced DIS3 expression. DIS3 encodes a catalytic subunit of the nuclear RNA exosome complex that mediates RNA processing and decay, and is mutated in several cancers. Chromosome conformation capture revealed a long range (570 kb) physical interaction between a sub-region of the risk locus, containing rs386772267, and a region ∼6 kb upstream of DIS3 Finally, repressor regulatory activity and allele-specific protein binding by transcription factors of the TCF/LEF family were observed for the risk-increasing allele of rs386772267, indicating that expression regulation at this risk locus may be influenced by the Wnt signaling pathway. In conclusion, we have identified a putative functional indel variant at chr13q22.1 that associates with decreased DIS3 expression in carriers of pancreatic cancer risk-increasing alleles, and could therefore affect nuclear RNA processing and/or decay.


Asunto(s)
Cromosomas Humanos Par 13 , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Neoplasias Pancreáticas/genética , Alelos , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico/métodos , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/metabolismo , Análisis de Secuencia de ADN , Factores de Transcripción/genética
7.
Hum Mol Genet ; 23(24): 6616-33, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25027329

RESUMEN

Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.


Asunto(s)
Cromosomas Humanos Par 5/química , Regulación Neoplásica de la Expresión Génica , Sitios Genéticos , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Telomerasa/genética , Alelos , Biología Computacional , Metilación de ADN , Epigénesis Genética , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Neoplasias/patología , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Riesgo
8.
Nucleic Acids Res ; 42(10): 6591-602, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24799433

RESUMEN

Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disorder resulting from expression of RNA containing an expanded CUG repeat (CUG(exp)). The pathogenic RNA is retained in nuclear foci. Poly-(CUG) binding proteins in the Muscleblind-like (MBNL) family are sequestered in foci, causing misregulated alternative splicing of specific pre-mRNAs. Inhibitors of MBNL1-CUG(exp) binding have been shown to restore splicing regulation and correct phenotypes in DM1 models. We therefore conducted a high-throughput screen to identify novel inhibitors of MBNL1-(CUG)12 binding. The most active compound was lomofungin, a natural antimicrobial agent. We found that lomofungin undergoes spontaneous dimerization in DMSO, producing dilomofungin, whose inhibition of MBNL1-(CUG)12 binding was 17-fold more potent than lomofungin itself. However, while dilomofungin displayed the desired binding characteristics in vitro, when applied to cells it produced a large increase of CUG(exp) RNA in nuclear foci, owing to reduced turnover of the CUG(exp) transcript. By comparison, the monomer did not induce CUG(exp) accumulation in cells and was more effective at rescuing a CUG(exp)-induced splicing defect. These results support the feasibility of high-throughput screens to identify compounds targeting toxic RNA, but also demonstrate that ligands for repetitive sequences may have unexpected effects on RNA decay.


Asunto(s)
Fenazinas/farmacología , Proteínas de Unión al ARN/metabolismo , ARN/química , ARN/metabolismo , Regiones no Traducidas 3' , Empalme Alternativo/efectos de los fármacos , Dimerización , Humanos , Fenazinas/química , Fenazinas/metabolismo , Estabilidad del ARN/efectos de los fármacos , Secuencias Repetitivas de Ácidos Nucleicos
9.
Carcinogenesis ; 35(12): 2670-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25233928

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by the accumulation of somatic mutations, epigenetic modifications and changes in the micro-environment. New approaches to investigating disruptions of gene expression networks promise to uncover key regulators and pathways in carcinogenesis. We performed messenger RNA-sequencing in pancreatic normal (n = 10) and tumor (n = 8) derived tissue samples, as well as in pancreatic cancer cell lines (n = 9), to determine differential gene expression (DE) patterns. Sub-network enrichment analyses identified HNF1A as the regulator of the most significantly and consistently dysregulated expression sub-network in pancreatic tumor tissues and cells (median P = 7.56×10(-7), median rank = 1, range = 1-25). To explore the effects of HNF1A expression in pancreatic tumor-derived cells, we generated stable HNF1A-inducible clones in two pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) and observed growth inhibition (5.3-fold, P = 4.5×10(-5) for MIA PaCa-2 clones; 7.2-fold, P = 2.2×10(-5) for PANC-1 clones), and a G0/G1 cell cycle arrest and apoptosis upon induction. These effects correlated with HNF1A-induced down-regulation of 51 of 84 cell cycle genes (e.g. E2F1, CDK2, CDK4, MCM2/3/4/5, SKP2 and CCND1), decreased expression of anti-apoptotic genes (e.g. BIRC2/5/6 and AKT) and increased expression of pro-apoptotic genes (e.g. CASP4/9/10 and APAF1). In light of the established role of HNF1A in the regulation of pancreatic development and homeostasis, our data suggest that it also functions as an important tumor suppressor in the pancreas.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Factor Nuclear 1-alfa del Hepatocito/genética , Neoplasias Pancreáticas/genética , Apoptosis , Biomarcadores de Tumor/metabolismo , Western Blotting , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Ciclo Celular , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Técnicas para Inmunoenzimas , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Nucleic Acids Res ; 40(13): 6380-90, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22492623

RESUMEN

The myotonic dystrophies (DM) are human diseases in which the accumulation of toxic RNA (CUG or CCUG) repeats in the cell causes sequestration of splicing factors, including MBNL1, leading to clinical symptoms such as muscle wasting and myotonia. We previously used Dynamic Combinatorial Chemistry to identify the first compounds known to inhibit (CUG)-MBNL1 binding in vitro. We now report transformation of those compounds into structures with activity in vivo. Introduction of a benzo[g]quinoline substructure previously unknown in the context of RNA recognition, as well as other modifications, provided several molecules with enhanced binding properties, including compounds with strong selectivity for CUG repeats over CAG repeats or CAG-CUG duplex RNA. Compounds readily penetrate cells, and improve luciferase activity in a mouse myoblast assay in which enzyme function is coupled to a release of nuclear CUG-RNA retention. Most importantly, two compounds are able to partially restore splicing in a mouse model of DM1.


Asunto(s)
Distrofia Miotónica/genética , Quinolinas/farmacología , ARN/química , Repeticiones de Trinucleótidos , Animales , Línea Celular , Técnicas Químicas Combinatorias , Cinética , Ratones , Quinolinas/química , Quinolinas/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Termodinámica
11.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37693606

RESUMEN

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

12.
Mil Med ; 188(9-10): e3280-e3284, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35257154

RESUMEN

Acute pulmonary embolism (PE) is a common, and sometimes fatal, diagnosis that results in over 11,000 deaths in hospitalized patients in the USA annually. In patients with high-risk or high-intermediate-risk PE and especially in whom thrombolytic therapy is contraindicated, mechanical thrombectomy can be an effective treatment option. This case series outlines three patients with PE who were successfully treated with large bore aspiration thrombectomy by Interventional Radiology at a community-based military treatment facility (MTF). Two patients had presented to the emergency department with acute PE and a third of patients with acute PE were transferred from an outside hospital specifically for mechanical thrombectomy due to a complication from systemic anticoagulation. The patients were categorized as good candidates for immediate large-bore aspiration thrombectomy, a recently added capability at the MTF. The patients showed immediate improvement post-procedure and required only one night admission for observation to the intensive care unit. Implementation of this new capability for patients with acute high-risk or high-intermediate-risk PE or with contraindications to thrombolysis provides an alternative treatment with immediate, life-saving capability.


Asunto(s)
Embolia Pulmonar , Terapia Trombolítica , Humanos , Terapia Trombolítica/métodos , Trombectomía/efectos adversos , Trombectomía/métodos , Embolia Pulmonar/cirugía , Embolia Pulmonar/etiología , Resultado del Tratamiento , Enfermedad Aguda , Hospitales
13.
STAR Protoc ; 4(3): 102362, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37330907

RESUMEN

Here, we present a protocol to identify transcriptional regulators potentially mediating downstream biological effects of germline variants associated with complex traits of interest, which enables functional hypothesis generation independent of colocalizing expression quantitative trait loci (eQTLs). We describe steps for tissue-/cell-type-specific co-expression network modeling, expression regulator activity inference, and identification of representative phenotypic master regulators. Finally, we detail activity QTL and eQTL analyses. This protocol requires genotype, expression, and relevant covariables and phenotype data from existing eQTL datasets. For complete details on the use and execution of this protocol, please refer to Hoskins et al.1.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Genotipo , Fenotipo , Herencia Multifactorial
14.
J Am Chem Soc ; 134(10): 4731-42, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22300544

RESUMEN

Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3'-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5'CUG/3'GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, sarco(endo)plasmic reticulum Ca(2+) ATPase 1, and cardiac troponin T. Based on these observations, the development of small-molecule ligands that target specifically expanded DM1 repeats could be of use as therapeutics. In the present study, chemical similarity searching was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of in vitro inhibitors of the RNA-protein complex were identified with low micromolar IC(50)'s, which are >20-fold more potent than the query compounds. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with chemical similarity searching.


Asunto(s)
Bases de Datos Factuales , Distrofia Miotónica/genética , ARN/química , Bibliotecas de Moléculas Pequeñas , Células HeLa , Humanos , Ligandos , Proteínas de Unión al ARN/genética
15.
Anal Bioanal Chem ; 402(5): 1889-98, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22218462

RESUMEN

Myotonic dystrophy type 1 (DM1), the most prevalent form of adult muscular dystrophy, is caused by expansion of a CTG repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. The pathogenic effects of the CTG expansion arise from the deleterious effects of the mutant transcript. RNA with expanded CUG tracts alters the activities of several RNA binding proteins, including muscleblind-like 1 (MBNL1). MBNL1 becomes sequestered in nuclear foci in complex with the expanded CUG-repeat RNA. The resulting loss of MBNL1 activity causes misregulated alternative splicing of multiple genes, leading to symptoms of DM1. The binding interaction between MBNL1 and mutant RNA could be a key step in the pathogenesis of DM1 and serves as a potential target for therapeutic intervention. We have developed two high-throughput screens suitable assays using both homogenous time-resolved fluorescence energy transfer and AlphaScreen technologies to detect the binding of a C-terminally His-tagged MBNL1 and a biotinylated (CUG)(12) RNA. These assays are homogenous and successfully miniaturized to 1,536-well plate format. Both assays were validated and show robust signal-to-basal ratios and Z' factors.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Distrofia Miotónica/genética , Proteínas de Unión al ARN/metabolismo , ARN/análisis , ARN/metabolismo , Secuencia de Bases , Relación Dosis-Respuesta a Droga , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Datos de Secuencia Molecular , Distrofia Miotónica/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Expansión de Repetición de Trinucleótido
16.
J Natl Cancer Inst ; 112(10): 1003-1012, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917448

RESUMEN

BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.


Asunto(s)
Neoplasias Pancreáticas/genética , Bases de Datos Genéticas , Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Transcriptoma
17.
Genetics ; 179(1): 323-30, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18493057

RESUMEN

The chemotherapeutic drug 5-fluorouracil (5FU) disrupts DNA synthesis by inhibiting the enzymatic conversion of dUMP to dTMP. However, mounting evidence indicates that 5FU has important effects on RNA metabolism that contribute significantly to the toxicity of the drug. Strains with mutations in nuclear RNA-processing exosome components, including Rrp6p, exhibit strong 5FU hypersensitivity. Studies also suggest that 5FU-containing RNA can inhibit pseudouridylation, the most abundant post-transcriptional modification of noncoding RNA. We examined the effect of modulating the expression and activity of the essential yeast rRNA pseudouridylase Cbf5p on the 5FU hypersensitivity of an rrp6-delta mutant strain. Depletion of Cbf5p suppressed the 5FU hypersensitivity of an rrp6-delta strain, while high-copy expression enhanced sensitivity to the drug. A mutation in the catalytic site of Cbf5p also suppressed the 5FU hypersensitivity in the rrp6-Delta mutant, suggesting that RNA-based 5FU toxicity requires the pseudouridylation activity of Cbf5p. High-copy expression of box H/ACA snoRNAs also suppressed the 5FU hypersensitivity of an rrp6-delta strain, suggesting that sequestration of Cbf5p to a particular guide RNA reduces Cbf5p-dependent 5FU toxicity. On the basis of these results and previous reports that certain pseudouridylases form stable adducts with 5FU-containing RNA, we suggest that Cbf5p binds tightly to substrates containing 5FU, causing their degradation by the TRAMP/exosome-mediated RNA surveillance pathway.


Asunto(s)
Fluorouracilo/metabolismo , Hidroliasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Western Blotting , Replicación del ADN/efectos de los fármacos , Fluorouracilo/toxicidad , Hidroliasas/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Nat Commun ; 9(1): 556, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422604

RESUMEN

In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Polimorfismo de Nucleótido Simple , Proteínas/genética , Proteínas Represoras/genética , Tensinas/genética
20.
Mol Cell Biol ; 24(24): 10766-76, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15572680

RESUMEN

The antimetabolite 5-fluorouracil (5FU) is a widely used chemotherapeutic for the treatment of solid tumors. Although 5FU slows DNA synthesis by inhibiting the ability of thymidylate synthetase to produce dTMP, the drug also has significant effects on RNA metabolism. Recent genome-wide assays for 5FU-induced haploinsufficiency in Saccharomyces cerevisiae identified genes encoding components of the RNA processing exosome as potential targets of the drug. In this report, we used DNA microarrays to analyze the effect of 5FU on the yeast transcriptome and found that the drug causes the accumulation of polyadenylated fragments of the 27S rRNA precursor and that defects in the nuclear exoribonuclease Rrp6p enhance this effect. The size distribution of these RNAs and their sensitivity to Rrp6p suggest that they are normally degraded by the nuclear exosome and a 5'-3' exoribonuclease. Consistent with this hypothesis, 5FU inhibits the growth of RRP6 mutants with defects in the degradation function of the enzyme and it interferes with the degradation of an rRNA precursor. The detection of poly(A)(+) pre-RNAs in strains defective in various steps in ribosome biogenesis suggests that the production of poly(A)(+) pre-rRNAs may be a general result of defects in rRNA processing. These findings suggest that 5FU inhibits an exosome-dependent surveillance pathway that degrades polyadenylated precursor rRNAs.


Asunto(s)
Antimetabolitos/farmacología , Fluorouracilo/farmacología , Poli A/metabolismo , ARN de Hongos/efectos de los fármacos , ARN Ribosómico/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Genes Fúngicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Poli A/genética , Poliadenilación , Precursores del ARN/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA