RESUMEN
Here we describe methods for (a) collecting starfish during their breeding period; (b) maintaining adults with fully grown gonads in laboratory aquaria; (c) rearing fertilized eggs to brachiolaria larvae, and (d) inducing larvae to metamorphose into juveniles under laboratory conditions. Such protocols should facilitate various analyses of starfish development throughout the entire life cycle of these model organisms.
Asunto(s)
Asterina/crecimiento & desarrollo , Animales , Acuicultura/instrumentación , Acuicultura/métodos , Asterina/embriología , Diseño de Equipo , Femenino , Larva/crecimiento & desarrollo , Masculino , Metamorfosis Biológica , Oocitos/citología , OogénesisRESUMEN
Oocyte maturation is a process wherein an oocyte arrested at prophase of meiosis I resumes meiosis to become a fertilizable egg. In starfish ovaries, a hormone released from follicle cells activates the oocytes, resulting in an increase in their intracellular pH (pHi), which is required for spindle assembly. Herein, we describe a protocol for pHi measurement in living oocytes microinjected with the pH-sensitive dye BCECF. For in vivo BCECF calibration, we treated oocytes with artificial seawater containing CH3COONH4 to clamp pHi, injected pH-standard solutions, and converted the BCECF fluorescence intensity ratios to pHi values. Of note, if the actual pHi is higher or lower than the known pH of injected standard solutions, the BCECF fluorescence intensity ratio will decrease or increase, respectively. On the other hand, the pH of the injected solution displaying no change in fluorescence intensity should be considered the actual pHi. These methods for pHi calibration and clamping are simple and reproducible.
RESUMEN
The kinase cyclin B-Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B-Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1 and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A-Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B-Cdk1 activation, cyclin A-Cdk1 is nonessential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation in starfish oocytes. Upon hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gßγ-PI3K pathway and an unidentified pathway downstream of Gßγ, called the atypical Gßγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.
Asunto(s)
Asterina , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Fase G2 , Proteínas Inmediatas-Precoces/metabolismo , Meiosis , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Asterina/citología , Asterina/enzimología , Asterina/metabolismo , FosforilaciónRESUMEN
Tight regulation of intracellular pH (pHi) is essential for biological processes. Fully grown oocytes, having a large nucleus called the germinal vesicle, arrest at meiotic prophase I. Upon hormonal stimulus, oocytes resume meiosis to become fertilizable. At this time, the pHi increases via Na+/H+ exchanger activity, although the regulation and function of this change remain obscure. Here, we show that in starfish oocytes, serum- and glucocorticoid-regulated kinase (SGK) is activated via PI3K/TORC2/PDK1 signaling after hormonal stimulus and that SGK is required for this pHi increase and cyclin B-Cdk1 activation. When we clamped the pHi at 6.7, corresponding to the pHi of unstimulated ovarian oocytes, hormonal stimulation induced cyclin B-Cdk1 activation; thereafter, oocytes failed in actin-dependent chromosome transport and spindle assembly after germinal vesicle breakdown. Thus, this SGK-dependent pHi increase is likely a prerequisite for these events in ovarian oocytes. We propose a model that SGK drives meiotic resumption via concomitant regulation of the pHi and cell cycle machinery.