Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Sci Technol ; 57(26): 9664-9674, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37341475

RESUMEN

Bipolar membranes (BPMs), a special class of ion exchange membranes with the unique ability to electrochemically induce either water dissociation or recombination, are of growing interest for environmental applications including eliminating chemical dosage for pH adjustment, resource recovery, valorization of brines, and carbon capture. However, ion transport within BPMs, and particularly at its junction, has remained poorly understood. This work aims to theoretically and experimentally investigate ion transport in BPMs under both reverse and forward bias operation modes, taking into account the production or recombination of H+ and OH-, as well as the transport of salt ions (e.g., Na+, Cl-) inside the membrane. We adopt a model based on the Nernst-Planck theory, that requires only three input parameters─membrane thickness, its charge density, and pK of proton adsorption─to predict the concentration profiles of four ions (H+, OH-, Na+, and Cl-) inside the membrane and the resulting current-voltage curve. The model can predict most of the experimental results measured with a commercial BPM, including the observation of limiting and overlimiting currents, which emerge due to particular concentration profiles that develop inside the BPM. This work provides new insights into the physical phenomena in BPMs and helps identify optimal operating conditions for future environmental applications.


Asunto(s)
Cloruro de Sodio , Sodio , Iones , Agua
2.
Environ Res ; 191: 110176, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32950515

RESUMEN

To minimize waste production and reduce reliance on fossil fuels, agricultural waste such as rice straw has been actively used in biochemical production. In Taiwan, cellulosic waste has been used in anaerobic digestion for bioethanol production. This process produces a large amount of biomass-associated sludge that may become a serious environmental issue. Therefore, in this study, the anaerobic digestion sludge was recycled for the production of activated carbon via pyrolysis and activation by KOH. Surface characterization showed increased surface area and development of microporous structure upon activation. The FTIR image showed that high temperature activation eliminated most functional groups in the activated carbon, except for CO and C-O groups. The results showed that the activated carbon could be used for pollutant adsorbents such as molecular dyes (methylene blue: 217 mg g-1) and metal ions (copper: 169 mg g-1) from aqueous solution. In addition, the as-synthesized activated carbon can be used for CO2 capture and capacitor. Instead of focusing on one single application, we proposed that centralized production of activated carbon could be used in various applications, while further modification could be adopted depending on the need of its specific application.


Asunto(s)
Carbón Orgánico , Aguas del Alcantarillado , Biomasa , Reciclaje , Taiwán
3.
Small ; 14(27): e1702054, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29845726

RESUMEN

An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well-defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium-ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g-1 ), with great rate capability (248 mAh g-1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g-1 in 0.5 × 10-3 m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.

4.
J Hazard Mater ; 476: 135025, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38944991

RESUMEN

In response to the need for trace arsenic removal and detoxification, an electro-assisted self-alkalization and oxidant-free processes (ESOP) cell was developed and investigated. It was found that the ESOP removed 90.3 % of arsenic and reduced the As(III) concentration from 150 µg L-1 to less than 5 µg L-1 in its cathode chamber. The As removal involved migration of As(III) and As(V) from the cathode to the anode driven by electrical current. In the ESOP cathode, As(III) was dissociated to As(III) oxyanions via alkalization and then oxidized into As(V) by H2O2. Nearly 80 % of As(III) migration could be attributed to the oxidation by H2O2 and approximately 20 % dissociation by pH alkalization. The voltage-controlled conditions (1.2 -1.5 V) achieved a peak cumulative H2O2 concentration of 10.9 mg L-1. The ESOP demonstrated a high As(III) oxidation to As(V) conversion efficiency of 97.0 % as well as a low energy cost of 0.013 kWh m-3 at 1.2 V. The migrated arsenic was stabilized onto the anode electrode through in-situ electro-oxidation of As(III) and electrosorption of As(III, V); this would help with the post-treatment waste disposal. Those results have provided important insights into an electrochemical approach for highly efficient arsenic detoxification.

5.
Chemosphere ; 317: 137865, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642144

RESUMEN

Recycling lithium-ion batteries has recently become a major concern. Ammonia leaching is commonly employed in such battery recycling methods since it has various advantages such as low toxicity and excellent selectivity toward precious metals. In this study, an electrochemical system with intercalation-type electrodes was used to investigate the selective recovery of lithium and ammonium from ammonia battery leachate. Using an activated carbon electrode as a counter electrode, the selectivity of lithium from the lithium manganese oxide (LMO) electrode and the selectivity of ammonium from the nickel hexacyanoferrate (NiHCF) electrode were examined within the system. The LMO//NiHCF system was next evaluated for lithium and ammonium recovery using a synthetic solution as well as real ammonia battery leachate. When compared to previous ammonium recovery methods, the results revealed good selectivity of lithium and ammonium from each LMO and NiHCF electrode with relatively low energy consumption for ammonium recovery (2.43 Wh g-N-1). The average recovery capacity of lithium was 1.39 mmol g-1 with a purity of up to 96.8% and the recovery capacity of ammonium was 1.09 mmol g-1 with 97.8% purity from the pre-treated leachate. This electrochemical method together with ammonia leaching can be a promising method for selective resource recovery from spent lithium-ion batteries.


Asunto(s)
Compuestos de Amonio , Litio , Amoníaco , Níquel , Suministros de Energía Eléctrica , Electrodos , Reciclaje/métodos , Iones
6.
Water Res ; 221: 118786, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35779455

RESUMEN

Currently, intercalation materials such as Prussian blue analogs have attracted considerable attention in water treatment applications due to their excellent size-based selectivity toward cations. This study aimed to explore the feasibility of using a nickel hexacyanoferrate (NiHCF) electrode for selective NH4+ capture from effluent from a municipal wastewater treatment plant. To assess the competitive intercalation between NH4+ and other common cations (Na+, Ca2+), a NiHCF//activated carbon (AC) hybrid capacitive deionization (CDI) cell was established to treat mixed-salt solutions. The results of cyclic voltammetry (CV) analysis showed a higher current response of the NiHCF electrode toward NH4+ ions than toward Na+ and Ca2+ ions. In a single-salt solution with NH4+, the optimized operating voltage of the hybrid CDI cell was 0.8 V, with a higher salt adsorption capacity (51.2 mg/g) than those obtained at other voltages (0.1, 0.4, 1.2 V). In a multisalt solution containing NH4+, Na+, and Ca2+ ions, the selectivity coefficients of NH4+/Ca2+ and NH4+/Na+ were 9.5 and 4.9, respectively. The feasibility of selective NH4+ capture using the NiHCF electrode in a hybrid CDI cell was demonstrated by treating the effluent from a municipal wastewater treatment plant (WWTP). The intercalation preference of the NiHCF electrode with the WWTP effluent was NH4+>K+>Na+>Ca2+>Mg2+, and NH4+ showed the highest salt adsorption capacity among the cations during consecutive cycles. Our results revealed that cations with smaller hydrated radii and lower (de)hydration energies were more favorably intercalated by the NiHCF electrode. The results provide important knowledge regarding the use of intercalation-type electrodes for selective nutrient removal and recovery from wastewater.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Electrodos , Ferrocianuros , Iones , Níquel , Purificación del Agua/métodos
7.
Chemosphere ; 293: 133622, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35033519

RESUMEN

Oxygen- and nitrogen-doped porous oxidized biochar (O,N-doped OBC) was fabricated in this study. Biochar (BC) can be enriched in surface functional groups (O and N) and the porosity can be improved by a simple, convenient and green procedure. BC was oxidized at 200 °C in an air atmosphere with quality control via oxidation time changes. As the oxidation time increased, the O and N contents and porosity of the materials improved. After 1.5 h of oxidation, the O and N contents of O,N-doped OBC-1.5 were 54.4% and 3.9%, higher than those of BC, which were 33.4% and 1.8%, respectively. The specific surface area and pore volume of O,N-doped OBC-1.5 were 88.5 m2 g-1 and 0.07 cm3 g-1, respectively, which were greater than those of BC. The improved surface functionality and porosity resulted in an increased heavy metal removal efficiency. As a result, the maximum adsorption capacity of Cu(II) by O,N-doped OBC was 23.32 mg L-1, which was twofold higher than that of pristine BC. Additionally, for a multiple ion solution, O,N-doped OBC-1.5 showed a greater adsorption behavior toward Cu(II) than Zn(II) and Ni(II). In a batch experiment, the concentration of Cu(II) decreased 92.3% after 90 min. In a filtration experiment, the O,N-doped OBC-based filter achieved a Cu(II) removal capacity of 12.90 mg g-1 and breakthrough time after 250 min. Importantly, the chemical mechanism was mainly governed by monolayer adsorption of Cu(II) onto a homogeneous surface of O,N-doped OBC-1.5. Surface complexation and electrostatic attraction were considered to be the chemical mechanisms governing the adsorption process.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Porosidad , Contaminantes Químicos del Agua/análisis
8.
J Hazard Mater ; 429: 128328, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114455

RESUMEN

Rational design of nanocomposite electrode materials with high conductivity, activity, and mechanical strength is critical in electrocatalysis. Herein, freestanding, flexible heteronanocomposites were fabricated in situ by carbonizing electrospun fibers with TiO2 nanoparticles on the surface for electrocatalytic degradation of water pollutants. The carbonization temperature was observed as a dominant parameter affecting the characteristics of the electrodes. As the carbonization temperature increased to 1000 °C, the conductivity of the electrode was significantly enhanced due to the high degree of graphitization (ID/IG ratio 1.10) and the dominant rutile phase. Additionally, the formation of TiO2 protrusions and the C-Ti heterostructure were observed at 1000 °C, which contributed to increasing the electrocatalytic activity. When 1.5 V (vs. Ag/AgCl) was employed, electrocatalytic experiments using the electrode achieved 90% degradation of crystal violet and 10.9-87.5% for an array of micropollutants. The electrical energy-per-order (EEO) for the removal of crystal violet was 0.7 kWh/m3/order, indicative of low-energy requirement. The efficient electrocatalytic activity can be ascribed to the fast electron transfer and the strong ability to generate hydroxyl radicals. Our findings expand efforts for the design of highly conductive heteronanocomposites in a facile in situ approach, providing a promising perspective for the energy-efficient electrocatalytic degradation of water pollutants.

9.
J Hazard Mater ; 423(Pt A): 127084, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34488095

RESUMEN

An integrated process of filtration and electrosorption was first applied to enable high-performance arsenic removal for groundwater remediation. An active manganese dioxide-rice husk biochar composite (active BC) filter was utilized for oxidization of As(III) to As(V) and initial removal of As(III, V). Subsequently, electrosorption by capacitive deionization (CDI) was applied as a posttreatment to improve arsenic removal. The active BC approach exhibited fast removal rates of 0.75 and 0.63 g mg-1 h-1 and high maximum removal capacities of 40.76 and 48.15 mg g-1 for As(III) and As(V), respectively. Importantly, column experiments demonstrated that the arsenic removal capacity in the active BC filter was 2.88 mg g-1, which was 72 times higher than that of BC. The results were due to the high efficiency (94%) of redox transformation of As(III) to As(V). The electrosorptive removal of arsenic was further controlled by changing the voltage in CDI. With a charging step of 1.2 V, the total arsenic concentration can be reduced to 0.001 mg L-1 with a low energy consumption of 0.0066 kW h m-3. Furthermore, the integrated system can remove As from real groundwater to achieve the World Health Organization guideline value for drinking water quality.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arsénico/análisis , Carbón Orgánico , Contaminantes Químicos del Agua/análisis
10.
Chemosphere ; 307(Pt 1): 135613, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35810870

RESUMEN

In this study, the electrosorption selectivity of porous activated carbon (AC) and nickel hexacyanoferrate (NiHCF), which represent two working mechanisms of capacitive electrosorption and redox intercalation, was investigated to separate cations in capacitive deionization (CDI). The cyclic voltammetry diagrams of AC showed the rectangular shape of double-layer charging, while that of NiHCF showed separated peaks associated with redox reactions. The specific capacitance of NiHCF was 143.6 F/g in 1 M NaCl, which was almost two times higher than that of AC. Cation selectivity experiments were conducted in single-pass CDI for a multi-cation solution. The electrosorption preference of the AC cathode was determined by a counterbalance between the ionic charge and hydrated size, reflecting the selectivity coefficient of different cations over Na+ in the range of 0.86-2.63. For the NiHCF cathode, the cation selectivity was mainly dominated by the hydrated radius and redox activity. Notably, high selectivities of K+/Na+ ≈ 3.57, Na+/Ca2+ ≈ 9.97, and Na+/Mg2+ ≈ 18.92 were obtained. A significant improvement in the electrosorption capacity and monovalent ion selectivity can be achieved by utilizing the NiHCF electrode. The study demonstrates the fundamental aspects and promising opportunities of CDI in regard to ion selectivity.

11.
ACS Omega ; 7(51): 47610-47618, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591207

RESUMEN

In this work, a solvent-free ZnO-template method is used to synthesize hierarchical porous carbons (denoted as HPC-X; X = 1, 1.5, 2, and 4 g of ZnO) via the pyrolysis of petroleum industrial-residual pitch with ZnO. The proposed method allows precise control of the micro/meso/macroporous structure of the HPC by adjusting the amount of ZnO. The results show that the average pore size of HPCs prominently increases from 2.4 to 3.7 nm with the increase in the ZnO/pitch ratio. In addition, it is shown that HPCs have a high surface area between 1141 and 1469 m2 g-1, a wide-range pore size distribution (micro-, meso-, and macropores), and a tap density ranging from 0.2 to 0.57 g cm-3. The capacitive deionization performances of HPCs for sodium and chloride ions are investigated. The results show that HPC-2 exhibits the highest electrosorption capacity of 9.94 mg g-1 within 10.0 min and a maximum electrosorption capacity of 10.62 mg g-1 at 1.2 V in a 5.0 mM NaCl solution. Hence, HPC-2 is a highly promising candidate as an electrode material for rapid deionization.

12.
Appl Opt ; 50(2): 227-30, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21221149

RESUMEN

In this paper, we describe a theoretical and experimental study of a wavelength-selective filter derived from hollow optical waveguides composed of Bragg reflectors with defect layers on a silicon substrate. The defect states of the transmission filter at wavelengths of 1519 and 1571 nm were realized using one-dimensional photonic crystals (1D PCs) formed from a-Si and SiO(2). The transmission spectra of the filter waveguides and the band structure of the defect 1D PCs were calculated using the two-dimensional finite-difference time-domain and transfer matrix methods, respectively. The device exhibited the narrow bandwidths of 0.5 and 1.1 nm for wavelengths of 1571 and 1519 nm, respectively.

13.
J Colloid Interface Sci ; 586: 819-829, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33198978

RESUMEN

High-efficiency recycling technology for endangered elements effectively mitigates the risk of resource shortages and promises the sustainability of supply chains, which is significant to the industry. In this study, an activated carbon (AC)-based capacitive deionization (CDI) for the selective electrosorption and recovery of indium ions (In3+) from acidic aqueous solution is proposed. The effects of applied voltage, pH, and initial concentration of indium were investigated to optimize the operation parameters for In3+ electrosorption. The results of cyclic voltammetry and the galvanostatic charge/discharge measurements indicate that the AC electrode shows good capability for the electrosorption of In3+ based on electrical double-layer capacitance. As demonstrated, In3+ can be successfully removed by CDI without deposition when the pH < 4, as confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The deionization capacity of In3+ is 7.95 mg/g with an energy consumption of 0.84 kWh/mol in single-pass mode CDI with an initial concentration of 50 mg/L (pH = 3) at 1.2 V. However, the removal of In3+ is affected by the solution pH since hydrogen ions (H+) compete for electrosorption. Note that In3+ ions with high valence are preferentially electrosorbed on the electrode surface over H+ ions, exhibiting a selectivity coefficient of 2.12. Herein, in the charging step, a large number of H+ ions in solution are rapidly electrosorbed onto the electrode, while these H+ ions are gradually replaced by a small number of In3+ ions in solution. Therefore, this electrosorption process shows great potential for effectively recovering indium ions from acidic aqueous solutions.

14.
Chemosphere ; 274: 129762, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33548648

RESUMEN

The main objective of the study is to explore the removal characteristics of Cu2+ and Zn2+ ions in activated carbon-based capacitive deionization (CDI). In this work, CDI experiments were performed to remove divalent ions (e.g., Cu2+, Zn2+, and Ca2+) from single- and multicomponent aqueous solutions. As evidenced, divalent heavy metals could be successfully removed by charging the CDI cell at 1.2 V. Notably, the preferential removal of Cu2+ ions over Zn2+ and Ca2+ ions was observed in the charging step. The removal capacities for Cu2+, Zn2+, and Ca2+ ions in a competitive environment were 29.6, 19.6, and 13.8 µmol/g, respectively. In contrast, the regeneration efficiencies for the removal of Cu2+ and Zn2+ were much lower than that of Ca2+, suggesting the occurrence of irreversible Faradaic reactions on the cathode. X-ray photoelectron spectroscopy analysis demonstrated that Cu2+ ions were reduced to Cu(I) and Zn2+ ions were transformed to ZnO/Zn(OH)2 on the cathode. Therefore, there were two major mechanisms for the removal of divalent heavy metal ions: capacitive electrosorption and cathodic electrodeposition. Specifically, the reduction potential played a crucial role in determining the removal characteristics. When regarding divalent cations with similar hydrated sizes, the divalent cation with a higher reduction potential tended to be separated by cathodic electrodeposition rather than double-layer charging, indicating the high removal selectivity of activated carbon-based CDI. This paper constitutes a significant contribution to promoting the application of CDI for contaminant sequestration.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Cationes Bivalentes , Electrodos , Oxidación-Reducción
15.
J Colloid Interface Sci ; 600: 199-208, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015512

RESUMEN

Regenerable methods for phosphate (P) recycling have received intense attention due to their potential environmental and economic benefits. In this study, to improve the electrosorptive removal of P in membrane capacitive deionization, an activated carbon (AC) electrode was coated with a heterogeneous anion-exchange resin layer, and named the AE-AC composite electrode. It was shown that the AE-AC electrode exhibited a good capacitive behavior for electrical double-layer charging. The batch-mode experiments indicted that when the solution pH changed from 5 to 8, the predominant P species shifted from monovalent H2PO4- to divalent HPO42- that was preferentially electroadsorbed for competitive electrosorption with Cl-. Importantly, the AE-AC composite electrode significantly increased the selectivity coefficient of P over Cl- to 0.56 that was 2.24-fold greater than that of the uncoated AC electrode, at 1.2 V in single-pass mode operation. This improvement can be ascribed to the preferential transport of P through the thin coating layer containing quaternary amine functional groups. The permselectivity of the coating also significantly increased the electrosorption capacity of P from 0.031 to 0.101 mmol/g with a high charge efficiency (97%) by the reduction in the co-ion repulsion effect. When the reverse voltage (-1.2 V) was applied, electroadsorbed P was reversibly desorbed from the AE-AC electrode in repeated operation. This work suggests that coating an anion-exchange resin layer on the surface of a carbon electrode shows great potential to improve the selective removal of P through electrosorption.

16.
Water Res ; 188: 116495, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065416

RESUMEN

In the present work, an active MnO2/rice husk biochar (BC) composite (MBC) was prepared to enhance As(III) removal for groundwater remediation. The MBC material obtained an improved porous structure (i.e., specific surface area, pore volume and mesoporosity) with MnO2, providing abundant reaction or interaction sites for surface or interface-related processes such as redox transformation and adsorption of arsenic. As a result, a significant enhancement in arsenic removal can be achieved by using MBC. More specifically, MBC showed a high removal capacity for As(III), which was tenfold higher than that of BC. This improvement can be ascribed to the redox transformation of As(III) via MnO2, resulting in the more effective removal of As(V) species. In addition, pH was an important factor that could influence the As(III) removal capacity. Under alkaline conditions, the As(III, V) removal capacity of MBC was clearly lower than those under acidic and neutral conditions due to the negative effects of electrostatic repulsion. Importantly, a powerful transformation capability of As(III) via MBC was presented; namely, only 5.9% As(III) remained in solution under neutral conditions. Both MnO2 and the BC substrate contributed to the removal of arsenic by MBC. MnO2 delivered Mn-OH functional groups to generate surface complexes with As(V) produced by As(III) oxidation, while the reduced Mn(II) and As(V) could precipitate on the MBC surface. The BC substrate also provided COOH and OH functional groups for As(III, V) removal by a surface complexation mechanism. Note that the application of MBC in the treatment of simulated groundwater demonstrated an efficient arsenic removal of 94.6% and a concentration of arsenic as low as the 10 µg L-1 WHO guideline.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Adsorción , Arsénico/análisis , Carbón Orgánico , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 410: 124586, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33248820

RESUMEN

A novel electrothermal swing (ETS) system with gold-electrodeposited activated carbon fiber cloth (GE-ACFC) was developed to adsorb and sustainably recover low-concentration Hg0. GE-ACFC with an Au growth time of 1200 s displayed the largest Hg0 adsorption capacity and >90% removal efficiency. The Hg0 adsorption of GE-ACFC was dominated by physisorption via Au amalgamation. In contrast, Hg adsorption of untreated ACFC (RAW-ACFC) was mainly controlled by physisorption and chemisorption related to carbonyl groups. Nevertheless, both ACFCs could reach 100% ETS Hg0 regeneration. The Hg re-adsorption of GE-ACFC was stable, with efficiency >90% at different regeneration temperatures in three-cycle ETS experiments, but the Hg re-adsorption efficiencies of RAW-ACFC greatly decreased to only 60% after 250 â„ƒ regeneration, due to the formation of electrothermal hot spots in the ACFC. Because the thermal and electrical conductivity of GE-ACFC increased due to Au electrodeposition, the presence of electrothermal hot spots in GE-ACFC-1200s was minor. Simulation results showed that both pseudo-first-order and pseudo-second-order models fitted well to the desorption patterns of the GE-ACFC. Mass transfer model further suggested that intraparticle diffusion control was the rate-limiting step, with diffusion coefficients increased from the first to the third cycle for GE-ACFC.

18.
Adv Mater ; 32(6): e1906877, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31793695

RESUMEN

Advanced redox-polymer materials offer a powerful platform for integrating electroseparations and electrocatalysis, especially for water purification and environmental remediation applications. The selective capture and remediation of trivalent arsenic (As(III)) is a central challenge for water purification due to its high toxicity and difficulty to remove at ultra-dilute concentrations. Current methods present low ion selectivity, and require multistep processes to transform arsenic to the less harmful As(V) state. The tandem selective capture and conversion of As(III) to As(V) is achieved using an asymmetric design of two redox-active polymers, poly(vinyl)ferrocene (PVF) and poly-TEMPO-methacrylate (PTMA). During capture, PVF selectively removes As(III) with exceptional uptake (>100 mg As/g adsorbent), and during release, synergistic electrocatalytic oxidation of As(III) to As(V) with >90% efficiency can be achieved by PTMA, a radical-based redox polymer. The system demonstrates >90% removal efficiencies with real wastewater and concentrations of arsenic as low as 10 ppb. By integrating electron-transfer through the judicious design of asymmetric redox-materials, an order-of-magnitude energy efficiency increase can be achieved compared to non-faradaic, carbon-based materials. The study demonstrates for the first time the effectiveness of asymmetric redox-active polymers for integrated reactive separations and electrochemically mediated process intensification for environmental remediation.

19.
J Hazard Mater ; 384: 121491, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31690504

RESUMEN

Persistent perfluorinated compounds (PFCs) have been recognized as a global environmental issue. Developing methods without leading to additional burden in nature will be essential for PFCs removal. Herein, we functionalized iron nanoparticles on living diatom (Dt) to efficiently enable the Fenton reaction and reactive oxygen species (ROS) production. Iron nanoparticles at the surface of living diatom act as promising catalytic agents to trigger OH radical generation from H2O2. Dt plays dual roles: i) as solid support for effective adsorption, and ii) it supplies oxygen and inherently produces ROS under stress conditions, which improves removal efficiency of PFCs. We also demonstrated its reusability by simple magnetic separation and 85% of decomposition efficiency could still be achieved. This newly developed diatom-assisted bioremediation strategy enables green and efficient PFC decomposition and shall be readily applicable to other persistent pollutants.


Asunto(s)
Ácidos Alcanesulfónicos/aislamiento & purificación , Reactores Biológicos , Caprilatos/aislamiento & purificación , Diatomeas , Fluorocarburos/aislamiento & purificación , Nanopartículas Magnéticas de Óxido de Hierro/química , Contaminantes Ambientales/aislamiento & purificación
20.
Inorg Chem ; 48(4): 1519-23, 2009 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-19159316

RESUMEN

Four isostructural organically templated lanthanide oxalatophosphates, (H(4)APPIP)[Ln(3)(C(2)O(4))(5.5)(H(2)PO(4))(2)].5H(2)O (Ln = Er-Lu and APPIP = 1,4-bis(3-aminopropyl)piperazine), have been synthesized under hydrothermal conditions and characterized by single-crystal and powder X-ray diffraction. Their structures contain LnO(8) trigonal dodecahedra linked by three bis-bidentate oxalates to form layers in the (102) plane, which are connected by dihydrogen phosphate and bis-monodentate oxalate ligands to form a 3D framework. The charge-compensating tetraprotonated 1,4-bis(3-aminopropyl)piperazinium cations and lattice water molecules are located in the 12-membered ring straight channels. They are the first examples of organically templated lanthanide oxalatophosphates. The thermal stability, guest desorption-sorption properties, variable-temperature in situ powder X-ray diffraction, magnetic susceptibility, and photoluminescence spectrum of the Er compound and catalytic activity of the Yb compound for the Biginelli reaction have also been studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA