Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 206(1): 51, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175208

RESUMEN

Microbial biodegradation serves as an effective approach to treat oil pollution. However, the application of such methods for the degrading long-chain alkanes still encounters significant challenges. Comparative proteomics has extensively studied the intracellular proteins of bacteria that degrade short- and medium-chain alkanes, but the role and mechanism of extracellular proteins in many microorganism remain unclear. To enhance our understanding of the roles of extracellular proteins in the adaptation to long-chain alkanes, a label-free LC-MS/MS strategy was applied for the relative quantification of extracellular proteins of Pseudomonas aeruginosa SJTD-1-M (ProteomeXchange identifier PXD014638). 444 alkane-sentitive proteins were acquired and their cell localization analysis was performed using the Pseudomonas Genome Database. Among them, 111 proteins were found to be located in extracellular or Outer Membrane Vesicles (OMVs). The alkane-induced abundance of 11 extracellular or OMV target proteins was confirmed by parallel reaction monitoring (PRM). Furthermore, we observed that the expression levels of three proteins (Pra, PA2815, and FliC) were associated with the carbon chain length of the added alkane in the culture medium. The roles of these proteins in cell mobility, alkane emulsification, assimilation, and degradation were further discussed. OMVs were found to contain a number of enzymes involved in alkane metabolism, fatty acid beta-oxidation, and the TCA cycle, suggesting their potential as sites for facilitated alkane degradation. In this sense, this exoproteome analysis contributes to a better understanding of the role of extracellular proteins in the hydrocarbon treatment process.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Alcanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Pseudomonas
2.
Bioorg Med Chem Lett ; 100: 129644, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316370

RESUMEN

Hydrogen sulfide (H2S) plays a critical role in cancer biology. Herein, we developed a series of glycosidase-triggered hydrogen sulfide (H2S) donors by connecting sugar moieties (including glucose, galactose and mannose) to COS donors via a self-immolative spacer. In the presence of corresponding glycosidases, H2S was gradually released from these donors in PBS buffer with releasing efficiencies from 36 to 67 %. H2S release was also detected by H2S probe WSP-1 after treatment HepG2 cells with Man1. Cytotoxicities of these glycosylated H2S donors were evaluated against HepG2 by MTT assay. Among them, Man1 and Man2 exhibited an obvious reduction of cell viability in HepG2 cells, with cell viability as 37.6 % for 80 µM of Man. Consistently, significant apoptosis was observed in HepG2 cells after treatment with Man1 and Man2. Finally, We evaluated the potential of Man1 for combination therapy with doxorubicin. A synergistic effect was observed between Man1 and Doxorubicin in HepG2 and Hela cells. All these results indicated glycosidase-activated H2S donorshave promising potential for cancer therapy.


Asunto(s)
Sulfuro de Hidrógeno , Humanos , Células HeLa , Sulfuro de Hidrógeno/farmacología , Óxidos de Azufre , Doxorrubicina/farmacología , Glicósido Hidrolasas
3.
EMBO J ; 38(18): e100948, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31418899

RESUMEN

As a ubiquitous bacterial secondary messenger, c-di-GMP plays key regulatory roles in processes such as bacterial motility and transcription regulation. CobB is the Sir2 family protein deacetylase that controls energy metabolism, chemotaxis, and DNA supercoiling in many bacteria. Using an Escherichia coli proteome microarray, we found that c-di-GMP strongly binds to CobB. Further, protein deacetylation assays showed that c-di-GMP inhibits the activity of CobB and thereby modulates the biogenesis of acetyl-CoA. Interestingly, we also found that one of the key enzymes directly involved in c-di-GMP production, DgcZ, is a substrate of CobB. Deacetylation of DgcZ by CobB enhances its activity and thus the production of c-di-GMP. Our work establishes a novel negative feedback loop linking c-di-GMP biogenesis and CobB-mediated protein deacetylation.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Sirtuinas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , GMP Cíclico/metabolismo , Retroalimentación Fisiológica , Regulación Bacteriana de la Expresión Génica , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos , Sistemas de Mensajero Secundario
4.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1453-1463, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239351

RESUMEN

Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with increasing incidence. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin has been used for the treatment of T2DM worldwide. Although sitagliptin has excellent therapeutic outcome, adverse effects are observed. In addition, previous studies have suggested that sitagliptin may have pleiotropic effects other than treating T2DM. These pieces of evidence point to the importance of further investigation of the molecular mechanisms of sitagliptin, starting from the identification of sitagliptin-binding proteins. In this study, by combining affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), we discover seven high-confidence targets that can interact with sitagliptin. Surface plasmon resonance (SPR) assay confirms the binding of sitagliptin to three proteins, i. e., LYPLAL1, TCP1, and CCAR2, with binding affinities (K D) ranging from 50.1 µM to 1490 µM. Molecular docking followed by molecular dynamic (MD) simulation reveals hydrogen binding between sitagliptin and the catalytic triad of LYPLAL1, and also between sitagliptin and the P-loop of ATP-binding pocket of TCP1. Molecular mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis indicates that sitagliptin can stably bind to LYPLAL1 and TCP1 in active sites, which may have an impact on the functions of these proteins. SPR analysis validates the binding affinity of sitagliptin to TCP1 mutant D88A is ~10 times lower than that to the wild-type TCP1. Our findings provide insights into the sitagliptin-targets interplay and demonstrate the potential of sitagliptin in regulating gluconeogenesis and in anti-tumor drug development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Fosfato de Sitagliptina , Humanos , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras , Diabetes Mellitus Tipo 2/inducido químicamente , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Fosfato de Sitagliptina/farmacología
5.
Nat Chem Biol ; 15(2): 151-160, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30598545

RESUMEN

The spatiotemporal generation of nitric oxide (NO), a versatile endogenous messenger, is precisely controlled. Despite its therapeutic potential for a wide range of diseases, NO-based therapies are limited clinically due to a lack of effective strategies for precisely delivering NO to a specific site. In the present study, we developed a novel NO delivery system via modification of an enzyme-prodrug pair of galactosidase-galactosyl-NONOate using a 'bump-and-hole' strategy. Precise delivery to targeted tissues was clearly demonstrated by an in vivo near-infrared imaging assay. The therapeutic potential was evaluated in both rat hindlimb ischemia and mouse acute kidney injury models. Targeted delivery of NO clearly enhanced its therapeutic efficacy in tissue repair and function recovery and abolished side effects due to the systemic release of NO. The developed protocol holds broad applicability in the targeted delivery of important gaseous signaling molecules and offers a potent tool for the investigation of relevant molecular mechanisms.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Óxido Nítrico/administración & dosificación , Óxido Nítrico/metabolismo , Animales , Compuestos Azo , Galactosidasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Óxido Nítrico/fisiología , Profármacos , Ratas , Ratas Sprague-Dawley , beta-Galactosidasa/metabolismo , beta-Galactosidasa/fisiología
6.
Bioorg Chem ; 116: 105391, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34607279

RESUMEN

The development of novel fluorescent dyes for bio-thiol is of great importance in biological, clinical and pharmaceutical sciences. Given the importance of bio-thiol anticipating in numerous physiological processes, there is a great need to construct fluorescent biosensors with high quality to detect them. Fluorophores, especially those used in bio-system, usually require high-quality properties such as high brightness, good water solubility, bio-compatible and photostability. Herein, we reported a novel fluorescent probe based on piperazine-coumarin scaffold with enhanced brightness and solubility. To further demonstrate the potential clinical applications, we performed living cell fluorescence image and human esophageal carcinoma diagnosis. The result indicated that we were able to distinguish pathological tissue from normal tissue by applying this probe. Thus, we hope this design will be helpful to develop high-quality fluorophores for clinical diagnosis.


Asunto(s)
Cumarinas/química , Neoplasias Esofágicas/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Colorantes Fluorescentes/química , Piperazina/química , Colorantes Fluorescentes/síntesis química , Células HEK293 , Humanos , Estructura Molecular , Solubilidad , Espectrometría de Fluorescencia
7.
Org Biomol Chem ; 18(41): 8376-8380, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33073272

RESUMEN

An efficient method for the synthesis of difluoroalkylated 2-azaspiro[4.5]decanes via copper-catalyzed difluoroalkylation of N-benzylacrylamides with ethyl bromodifluoroacetate has been established. The reaction experienced a tandem radical addition and dearomatizing cyclization process. In addition, the resultant products can be smoothly converted into a difluoroalkylated quinolinone and saturated spirocyclohexanone scaffold.

8.
Org Biomol Chem ; 18(28): 5473-5480, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32643744

RESUMEN

Bacterial infection is a major threat to the health and life of humans due to the development of drug resistance, which is related to biofilm formation. Nitric oxide (NO) has emerged as an important factor in regulating biofilm formation. In order to harness the potential benefits of NO and develop effective antibacterial agents, we designed and synthesized a new class of NO hybrids in which the active scaffold benzothienoazepine was tagged with a nitroso group and further conjugated with quaternary ammoniums or phosphoniums. The temporal release of NO from these hybrids can be achieved by photoactivation. Interestingly, the NO release follows a pseudo-zero-order kinetics, which is easily determined by measuring the fluorescent benzothienoazepine or NO. Compared to the positive control ciprofloxacin, the NO hybrid with triphenyl phosphonium (TPP) exhibited more effective activity against S. aureus biofilm in darkness. Irradiation of the NO hybrid led to higher inhibition against S. aureus biofilm compared to the parental NO hybrid in darkness or the corresponding NO-released product, indicating the combined effect of NO and the NO-released product. Therefore, this new class of NO hybrids includes very promising antimicrobial agents and this work provides a new way for the design of highly effective antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Azepinas/farmacología , Biopelículas/efectos de los fármacos , Óxido Nítrico/metabolismo , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Azepinas/síntesis química , Azepinas/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Procesos Fotoquímicos
9.
Chemistry ; 25(33): 7888-7895, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30972843

RESUMEN

Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications as spin probes/labels for EPR spectroscopy and imaging, and as polarizing agents for dynamic nuclear polarization. The high hydrophilicity of TAM radicals is essential for their biomedical applications. However, the synthesis of hydrophilic TAM radicals (e.g., OX063) is extremely challenging and has only been reported in the patent literature, to date. Herein, an efficient synthesis of a highly water-soluble TAM radical bis(8-carboxyl-2,2,6,6-tetramethylbenzo[1,2-d:4,5-d']bis([1,3]dithiol-4-yl)-mono-(8-carboxyl-2,2,6,6-tetrakis(2-hydroxyethyl)benzo[1,2-d:4,5-d']bis([1,3]dithiol-4-yl)methyl (TFO), which contains four additional hydroxylethyl groups, relative to the Finland trityl radical CT-03, is reported. Similar to OX063, TFO exhibits excellent properties, including high water solubility in phosphate buffer, low log P, low pKa , long relaxation times, and negligible binding with bovine serum albumin. On the other hand, TFO has a sharper EPR line and higher O2 sensitivity than those of OX063. Therefore, in combination with its facile synthesis, TFO should find wide applications in magnetic resonance related fields and this synthetic approach would shed new light on the synthesis of other hydrophilic TAM radicals.

10.
J Org Chem ; 84(18): 11774-11782, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31454244

RESUMEN

Triarylmethanol adopts a propeller-shaped conformation with either right-handed (P) or left-handed (M) configuration. Herein, new triarylmethanols with two chiral centers were obtained via introduction of two cis-hydroxyl groups on the side chains, affording four stereoisomers. These four stereoisomers were easily separated by silica gel column chromatography into two pairs of propeller-shaped enantiomers, as shown by NMR and X-ray crystallographic studies. High-performance liquid chromatography (HPLC) studies showed that the configurations of the hydroxyl-bearing triarylmethanols are much more stable than those of the bulky tert-butyldimethylsilyl-protected precursors, inconsistent with the general strategy in which the steric repulsion is largely responsible for the configurational stability. Similarly, two hydroxyl-bearing tetrathiatriarylmethyl (TAM) radicals also exhibit excellent configurational stability and are thus separable by CS-HPLC into four stereoisomers. Interestingly, both helical chirality from triaryl group (M or P) and central chirality (R and S) on the side chain have little effect on their electron paramagnetic resonance properties. Our present study provides a new strategy to construct configurationally stable triaryl compounds and demonstrates that the side chain on TAM radicals is a new site for their structural modifications.

11.
Mol Cell Proteomics ; 16(12): 2243-2253, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29018126

RESUMEN

Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Grupo Citocromo b/metabolismo , Ferritinas/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Proteómica/métodos , Proteínas Ribosómicas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Grupo Citocromo b/química , Ferritinas/química , Células HEK293 , Humanos , Inmunidad Innata , Macrófagos/citología , Macrófagos/metabolismo , Espectrometría de Masas , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , FN-kappa B/metabolismo , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Proteínas Ribosómicas/química , Células THP-1
12.
Mol Cell Proteomics ; 16(8): 1491-1506, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28572091

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoma/metabolismo , Proteínas Bacterianas/genética , Pared Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteoma/genética , Proteómica , Transducción de Señal
13.
Bioorg Med Chem Lett ; 26(10): 2434-2437, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27055940

RESUMEN

This work demonstrated the high efficiency of a sub-milligram-synthesis based medicinal chemistry method. Totally 72 compounds, consisting a tri-substituted pyrrolidine core, were prepared. Around 0.1mg of each compound was solid-phase synthesized. Based on the additive property of UV absorptions of unconjugated chromophores of a molecule, these compounds were quantified by UV measurement. A hit, whose IC50 value was 1.2µM in HDAC11 inhibition assays, highlights the applicability of the approach reported here in future optimization works.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Animales , Histona Desacetilasas/química , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Estructura Molecular , Células Sf9 , Técnicas de Síntesis en Fase Sólida , Espectrofotometría Ultravioleta , Relación Estructura-Actividad
14.
J Biol Chem ; 289(9): 5986-96, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24394411

RESUMEN

The ten-eleven translocation (TET) family of dioxygenases (TET1/2/3) converts 5-methylcytosine to 5-hydroxymethylcytosine and provides a vital mechanism for DNA demethylation. However, how TET proteins are regulated is largely unknown. Here we report that the O-linked ß-GlcNAc (O-GlcNAc) transferase (OGT) is not only a major TET3-interacting protein but also regulates TET3 subcellular localization and enzymatic activity. OGT catalyzes the O-GlcNAcylation of TET3, promotes TET3 nuclear export, and, consequently, inhibits the formation of 5-hydroxymethylcytosine catalyzed by TET3. Although TET1 and TET2 also interact with and can be O-GlcNAcylated by OGT, neither their subcellular localization nor their enzymatic activity are affected by OGT. Furthermore, we show that the nuclear localization and O-GlcNAcylation of TET3 are regulated by glucose metabolism. Our study reveals the differential regulation of TET family proteins by OGT and a novel link between glucose metabolism and DNA epigenetic modification.


Asunto(s)
Núcleo Celular/enzimología , Metilación de ADN/fisiología , Dioxigenasas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , 5-Metilcitosina/análogos & derivados , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Citosina/análogos & derivados , Citosina/metabolismo , Dioxigenasas/genética , Glucosa/genética , Glucosa/metabolismo , Células HeLa , Humanos , N-Acetilglucosaminiltransferasas/genética
15.
Nucleic Acids Res ; 41(11): 5817-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23605041

RESUMEN

Replicative DNA polymerases require an RNA primer for leading and lagging strand DNA synthesis, and primase is responsible for the de novo synthesis of this RNA primer. However, the archaeal primase from Pyrococcus furiosus (Pfu) frequently incorporates mismatched nucleoside monophosphate, which stops RNA synthesis. Pfu DNA polymerase (PolB) cannot elongate the resulting 3'-mismatched RNA primer because it cannot remove the 3'-mismatched ribonucleotide. This study demonstrates the potential role of a RecJ-like protein from P. furiosus (PfRecJ) in proofreading 3'-mismatched ribonucleotides. PfRecJ hydrolyzes single-stranded RNA and the RNA strand of RNA/DNA hybrids in the 3'-5' direction, and the kinetic parameters (Km and Kcat) of PfRecJ during RNA strand digestion are consistent with a role in proofreading 3'-mismatched RNA primers. Replication protein A, the single-stranded DNA-binding protein, stimulates the removal of 3'-mismatched ribonucleotides of the RNA strand in RNA/DNA hybrids, and Pfu DNA polymerase can extend the 3'-mismatched RNA primer after the 3'-mismatched ribonucleotide is removed by PfRecJ. Finally, we reconstituted the primer-proofreading reaction of a 3'-mismatched ribonucleotide RNA/DNA hybrid using PfRecJ, replication protein A, Proliferating cell nuclear antigen (PCNA) and PolB. Given that PfRecJ is associated with the GINS complex, a central nexus in archaeal DNA replication fork, we speculate that PfRecJ proofreads the RNA primer in vivo.


Asunto(s)
Proteínas Arqueales/metabolismo , Replicación del ADN , Exorribonucleasas/metabolismo , Pyrococcus furiosus/enzimología , ARN/metabolismo , Disparidad de Par Base , ADN/química , ADN/metabolismo , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Pyrococcus furiosus/genética , ARN/química
16.
Comput Biol Med ; 170: 108071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325212

RESUMEN

BACKGROUND: Thoracic aortic aneurysm (TAA) refers to dilation and enlargement of the thoracic aorta caused by various reasons. Most patients have no apparent symptoms in the early stage and are subject to a poor prognosis once the aneurysm ruptures. It is crucial to identify individuals who are predisposed to TAA and to discover effective therapeutic targets for early intervention. METHODS: We conducted a label-free quantitative proteomic analysis among aorta tissue samples from TAA patients to screen differentially expressed proteins (DEPs) and key co-expression modules. Two datasets from Gene Expression Omnibus (GEO) database were included for integrative analysis, and the identified genes were subjected to immunohistochemistry (IHC) validation. Detailed vesicle transport related enrichment analysis was conducted and two FDA-approved drugs, chlorpromazine (CPZ) and chloroquine (CQ), were selected for in vivo inhibition of vesicle transport in mice TAA model. The diameter of thoracic aorta, mortality and histological differences after interventions were evaluated. RESULTS: We found significant enrichments in functions involved with vesicle transport, extracellular matrix organizing, and infection diseases in TAA. Endocytosis was the most essential vesicle transport process in TAA formation. Interventions with CPZ and CQ significantly reduced the aneurysm diameter and elastin degradation in vivo and enhanced the survival rates of TAA mice. CONCLUSIONS: We systematically screened the aberrantly regulated bioprocesses in TAA based on integrative multi-omics analyses, identified and demonstrated the importance of vesicle transport in the TAA formation. Our study provided pilot evidence that vesicular transport was a potential and promising target for the treatment of TAA.


Asunto(s)
Aneurisma de la Aorta Torácica , Multiómica , Humanos , Animales , Ratones , Proteómica , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/patología , Modelos Animales de Enfermedad
17.
Biochim Biophys Acta ; 1824(7): 859-65, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22561532

RESUMEN

We recently provided the first report that RNase HIII can cleave a DNA-rN(1)-DNA/DNA substrate (rN(1), one ribonucleotide) in vitro. In the present study, mutagenesis analyses and molecular dynamics (MD) simulations were performed on RNase HIII from Chlamydophila pneumoniae AR39 (CpRNase HIII). Our results elucidate the mechanism of ribonucleotide recognition employed by CpRNase HIII, indicating that the G95/K96/G97 motif of CpRNase HIII represents the main surface interacting with single ribonucleotides, in a manner similar to that of the GR(K)G motif of RNase HIIs. However, CpRNase HIII lacks the specific tyrosine required for RNase HII to recognize single ribonucleotides in double-stranded DNA (dsDNA). Interestingly, MD shows that Ser94 of CpRNase HIII forms a stable hydrogen bond with the deoxyribonucleotide at the (5')RNA-DNA(3') junction, moving this nucleotide away from the chimeric ribonucleotide. This movement appears to deform the nucleic acid backbone at the RNA-DNA junction and allows the ribonucleotide to interact with the GKG motif. Based on the inferences drawn from MD simulations, biochemical results indicated that Ser94 was necessary for catalytic activity on the DNA-rN(1)-DNA/DNA substrate; mutant S94V could bind this substrate but exhibited no cleavage. Mismatches opposite the single ribonucleotide misincorporated in dsDNA inhibited cleavage by CpRNase HIII to varying degrees but did not interfere with CpRNase/substrate binding. Further MD results implied that mismatches impair the interaction between Ser94 and the deoxyribonucleotide at the RNA-DNA junction. Consequently, recognition of the misincorporated ribonucleotide was disturbed. Our results may help elucidate the distinct substrate-recognition properties of different RNase Hs.


Asunto(s)
Proteínas Bacterianas/química , Chlamydophila pneumoniae/química , ADN Bacteriano/química , ARN Bacteriano/química , Ribonucleasas/química , Ribonucleótidos/química , Serina/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Chlamydophila pneumoniae/enzimología , Chlamydophila pneumoniae/genética , ADN Bacteriano/metabolismo , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , ARN Bacteriano/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleótidos/metabolismo , Serina/metabolismo , Especificidad por Sustrato
18.
Mol Microbiol ; 83(5): 1080-93, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22332714

RESUMEN

Two ribonuclease Hs (RNase Hs) have been found in Chlamydophila pneumoniae, CpRNase HII and CpRNase HIII. This work is the first report that CpRNase HIII can efficiently cleave DNA-rN(1) -DNA/DNA (rN(1) , monoribonucleotide) in vitro in the presence of Mn(2+) , whereas the enzymatic activity of CpRNase HII on the same substrate was inhibited by Mn(2+) and dependent on Mg(2+) . However, the ability of both CpRNase Hs to cleave other alternative substrates (RNA/DNA hybrids and Okazaki-like substrates), was insensitive to the divalent ions changes, suggesting that high concentrations of Mn(2+) specifically repressed the ability of CpRNase HII to cleave DNA-rN(1) -DNA/DNA but activated this function in CpRNase HIII. Further in vivo experiments showed that the CpRNase HII complementation of Escherichia coli rnh(-) mutations in an Mg(2+) environment was suppressed by Mn(2+) . In contrast, Mn(2+) was indispensable for CpRNase HIII to complement the same mutations. Further, the cell growth inhibition and the genomic DNA sensitivity to alkali in the bacterial strain lacking RNase HII activity could be relieved by functional CpRNase HII or HIII with its compatible ion. Therefore, CpRNase HIII can execute cleavage activity on DNA-rN(1) -DNA/DNA under a Mn(2+) -rich environment and may function as a substitute for CpRNase HII under special physiological states.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydophila pneumoniae/enzimología , ADN/metabolismo , Ribonucleasas/metabolismo , Proteínas Bacterianas/genética , Chlamydophila pneumoniae/genética , ADN Bacteriano/metabolismo , Manganeso/metabolismo , Mutación , Ribonucleasas/genética , Ribonucleótidos/metabolismo
19.
Biomed Mater ; 18(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36649654

RESUMEN

The identification of degraded products of implanted scaffolds is desirable to avoid regulatory concerns.In vivoidentification of products produced by the degradation of natural protein-based scaffolds is complex and demands the establishment of a routine analytical method. In this study, we developed a method for the identification of peptides produced by the degradation of zein bothin vitroandin vivousing high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Forin vitroexperiments, zein was degraded enzymatically and analyzed produced peptides.In vitrostudy showed cytocompatibility of peptides present in the hydrolysate of zein with no induction of apoptosis and cell senescence. Forin vivoexperiment, zein gels were prepared and subcutaneously implanted in rats. Peptides produced by the degradation of zein were identified and few were selected as targeted (unique peptides) and two peptides were synthesized as the reference sequence of these peptides. Further, peptide analysis using HPLC-MS/MS of different organs was performed after 2 and 8 weeks of implantation of zein gel in rats. It was found that zein-originated peptides were accumulated in different organs. QQHIIGGALF or peptides with same fractions were identified as unique peptides. These peptides were also found in control rats with regular rat feed, which means the degradation of implanted zein biomaterial produced food related peptides of non-toxic nature. Furthermore, hemotoxylin and eosin (H&E) staining exhibited normal features. Overall, zein degraded products showed cytocompatibility and did not induce organ toxicity, and QQHIIGGALF can act as a standard peptide for tracing and determining zein degradation. The study also provides the feasibility of complex analysis on identification and quantification of degradation products of protein-based scaffolds.


Asunto(s)
Espectrometría de Masas en Tándem , Zeína , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Zeína/química , Péptidos/química , Proteínas
20.
Redox Biol ; 59: 102590, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603529

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) increase risks of severe small intestinal injuries. Development of effective therapeutic strategies to overcome this issue remains challenging. Nitric oxide (NO) as a gaseous mediator plays a protective role in small intestinal injuries. However, small intestine-specific delivery systems for NO have not been reported yet. In this study, we reported a small intestine-targeted polymeric NO donor (CS-NO) which was synthesized by covalent grafting of α-glucosidase-activated NO donor onto chitosan. In vitro and in vivo experiments demonstrated that CS-NO could be activated by intestinal α-glucosidase to release NO in the small intestine. Pre-treatment of mice with CS-NO significantly alleviated small intestinal damage induced by indomethacin, as demonstrated by down-regulation of the levels of pro-inflammatory cytokines and chemokines CXCL1/KC. Moreover, CS-NO also attenuated indomethacin-induced gut barrier dysfunction as evidenced by up-regulation of the levels of tight junction proteins and restoration of the levels of goblet cells and MUC2 production. Meanwhile, CS-NO effectively restored the defense function of Paneth cells against pathogens in small intestine. Our present study paves the way to develop NO-based therapeutic strategy for NSAIDs-induced small intestinal injuries.


Asunto(s)
Óxido Nítrico , alfa-Glucosidasas , Ratones , Animales , Óxido Nítrico/metabolismo , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/farmacología , Antiinflamatorios no Esteroideos/efectos adversos , Indometacina/efectos adversos , Indometacina/metabolismo , Intestino Delgado/lesiones , Intestino Delgado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA