Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Bioinformatics ; 25(1): 208, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849719

RESUMEN

BACKGROUND: Drug design is a challenging and important task that requires the generation of novel and effective molecules that can bind to specific protein targets. Artificial intelligence algorithms have recently showed promising potential to expedite the drug design process. However, existing methods adopt multi-objective approaches which limits the number of objectives. RESULTS: In this paper, we expand this thread of research from the many-objective perspective, by proposing a novel framework that integrates a latent Transformer-based model for molecular generation, with a drug design system that incorporates absorption, distribution, metabolism, excretion, and toxicity prediction, molecular docking, and many-objective metaheuristics. We compared the performance of two latent Transformer models (ReLSO and FragNet) on a molecular generation task and show that ReLSO outperforms FragNet in terms of reconstruction and latent space organization. We then explored six different many-objective metaheuristics based on evolutionary algorithms and particle swarm optimization on a drug design task involving potential drug candidates to human lysophosphatidic acid receptor 1, a cancer-related protein target. CONCLUSION: We show that multi-objective evolutionary algorithm based on dominance and decomposition performs the best in terms of finding molecules that satisfy many objectives, such as high binding affinity and low toxicity, and high drug-likeness. Our framework demonstrates the potential of combining Transformers and many-objective computational intelligence for drug design.


Asunto(s)
Algoritmos , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/química , Inteligencia Artificial
2.
Mol Pharm ; 21(5): 2425-2434, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38554143

RESUMEN

GRP78, a member of the HSP70 superfamily, is an endoplasmic reticulum chaperone protein overexpressed in various cancers, making it a promising target for cancer imaging and therapy. Positron emission tomography (PET) imaging offers unique advantages in real time, noninvasive tumor imaging, rendering it a suitable tool for targeting GRP78 in tumor imaging to guide targeted therapy. Several studies have reported successful tumor imaging using PET probes targeting GRP78. However, existing PET probes face challenges such as low tumor uptake, inadequate in vivo distribution, and high abdominal background signal. Therefore, this study introduces a novel peptide PET probe, [18F]AlF-NOTA-c-DVAP, for targeted tumor imaging of GRP78. [18F]AlF-NOTA-c-DVAP was radiolabeled with fluoride-18 using the aluminum-[18F]fluoride ([18F]AlF) method. The study assessed the partition coefficients, stability in vitro, and metabolic stability of [18F]AlF-NOTA-c-DVAP. Micro-PET imaging, pharmacokinetic analysis, and biodistribution studies were carried out in tumor-bearing mice to evaluate the probe's performance. Docking studies and pharmacokinetic analyses of [18F]AlF-NOTA-c-DVAP were also performed. Immunohistochemical and immunofluorescence analyses were conducted to confirm GRP78 expression in tumor tissues. The probe's binding affinity to GRP78 was analyzed by molecular docking simulation. [18F]AlF-NOTA-c-DVAP was radiolabeled in just 25 min with a high yield of 51 ± 16%, a radiochemical purity of 99%, and molar activity within the range of 20-50 GBq/µmol. [18F]AlF-NOTA-c-DVAP demonstrated high stability in vitro and in vivo, with a logD value of -3.41 ± 0.03. Dynamic PET imaging of [18F]AlF-NOTA-c-DVAP in tumors showed rapid uptake and sustained retention, with minimal background uptake. Biodistribution studies revealed rapid blood clearance and excretion through the kidneys following a single-compartment reversible metabolic model. In PET imaging, the T/M ratios for A549 tumors (high GRP78 expression), MDA-MB-231 tumors (medium expression), and HepG2 tumors (low expression) at 60 min postintravenous injection were 10.48 ± 1.39, 6.25 ± 0.47, and 3.15 ± 1.15% ID/g, respectively, indicating a positive correlation with GRP78 expression. This study demonstrates the feasibility of using [18F]AlF-NOTA-c-DVAP as a PET tracer for imaging GRP78 in tumors. The probe shows promising results in terms of stability, specificity, and tumor targeting. Further research may explore the clinical utility and potential therapeutic applications of this PET tracer for cancer diagnosis.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Radioisótopos de Flúor , Proteínas de Choque Térmico , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Ratones , Humanos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor/farmacocinética , Distribución Tisular , Proteínas de Choque Térmico/metabolismo , Radiofármacos/farmacocinética , Radiofármacos/administración & dosificación , Línea Celular Tumoral , Ratones Desnudos , Femenino , Ratones Endogámicos BALB C , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacocinética
3.
Nucleic Acids Res ; 50(4): 1829-1848, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166828

RESUMEN

DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand-G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.


Asunto(s)
Antineoplásicos/química , Neoplasias de la Mama , G-Cuádruplex , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Diseño de Fármacos , Femenino , Genes myc , Humanos , Ligandos , Células MCF-7 , Ratones , Regiones Promotoras Genéticas , Telómero
4.
Chemistry ; 29(34): e202300705, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36971407

RESUMEN

The development of site-specific, target-selective and biocompatible small molecule ligands as a fluorescent tool for real-time study of cellular functions of RNA G-quadruplexes (G4s), which are associated with human cancers, is of significance in cancer biology. We report a fluorescent ligand that is a cytoplasm-specific and RNA G4-selective fluorescent biosensor in live HeLa cells. The in vitro results show that the ligand is highly selective targeting RNA G4s including VEGF, NRAS, BCL2 and TERRA. These G4s are recognized as human cancer hallmarks. Moreover, intracellular competition studies with BRACO19 and PDS, and the colocalization study with G4-specific antibody (BG4) in HeLa cells may support that the ligand selectively binds to G4s in cellulo. Furthermore, the ligand was demonstrated for the first time in the visualization and monitoring of dynamic resolving process of RNA G4s by the overexpressed RFP-tagged DHX36 helicase in live HeLa cells.


Asunto(s)
G-Cuádruplex , Neoplasias , Humanos , Células HeLa , Ligandos , ARN/metabolismo , Citoplasma/metabolismo
5.
Mol Divers ; 27(5): 2239-2255, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36331785

RESUMEN

There has been considerable interest in transforming peptides into small molecules as peptide-based molecules often present poorer bioavailability and lower metabolic stability. Our studies looked into building machine learning (ML) models to investigate if ML is able to identify the 'bioactive' features of peptides and use the features to accurately discriminate between binding and non-binding small molecules. The ghrelin receptor (GR), a receptor that is implicated in various diseases, was used as an example to demonstrate whether ML models derived from a peptide library can be used to predict small molecule binders. ML models based on three different algorithms, namely random forest, support vector machine, and extreme gradient boosting, were built based on a carefully curated dataset of peptide/peptidomimetic and small molecule GR ligands. The results indicated that ML models trained with a dataset exclusively composed of peptides/peptidomimetics provide limited predictive power for small molecules, but that ML models trained with a diverse dataset composed of an array of both peptides/peptidomimetics and small molecules displayed exceptional results in terms of accuracy and false rates. The diversified models can accurately differentiate the binding small molecules from non-binding small molecules using an external validation set with new small molecules that we synthesized previously. Structural features that are the most critical contributors to binding activity were extracted and are remarkably consistent with the crystallography and mutagenesis studies.


Asunto(s)
Peptidomiméticos , Peptidomiméticos/química , Receptores de Ghrelina , Ligandos , Péptidos/química , Aprendizaje Automático , Máquina de Vectores de Soporte
6.
Molecules ; 28(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37110619

RESUMEN

The Aurora kinases (A, B, and C) are a family of three isoform serine/threonine kinases that regulate mitosis and meiosis. The Chromosomal Passenger Complex (CPC), which contains Aurora B as an enzymatic component, plays a critical role in cell division. Aurora B in the CPC ensures faithful chromosome segregation and promotes the correct biorientation of chromosomes on the mitotic spindle. Aurora B overexpression has been observed in several human cancers and has been associated with a poor prognosis for cancer patients. Targeting Aurora B with inhibitors is a promising therapeutic strategy for cancer treatment. In the past decade, Aurora B inhibitors have been extensively pursued in both academia and industry. This paper presents a comprehensive review of the preclinical and clinical candidates of Aurora B inhibitors as potential anticancer drugs. The recent advances in the field of Aurora B inhibitor development will be highlighted, and the binding interactions between Aurora B and inhibitors based on crystal structures will be presented and discussed to provide insights for the future design of more selective Aurora B inhibitors.


Asunto(s)
Neoplasias , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Cromosomas/metabolismo , Mitosis , Segregación Cromosómica , Huso Acromático/metabolismo , Neoplasias/metabolismo
7.
Bioorg Chem ; 117: 105386, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695732

RESUMEN

Lysophosphatidic acids (LPAs) are bioactive phospholipids implicated in a wide range of cellular activities that regulate a diverse array of biological functions. They recognize two types of G protein-coupled receptors (LPARs): LPA1-3 receptors and LPA4-6 receptors that belong to the endothelial gene (EDG) family and non-endothelial gene family, respectively. In recent years, the LPA signaling pathway has captured an increasing amount of attention because of its involvement in various diseases, such as idiopathic pulmonary fibrosis, cancers, cardiovascular diseases and neuropathic pain, making it a promising target for drug development. While no drugs targeting LPARs have been approved by the FDA thus far, at least three antagonists have entered phase Ⅱ clinical trials for idiopathic pulmonary fibrosis (BMS-986020 and BMS-986278) and systemic sclerosis (SAR100842), and one radioligand (BMT-136088/18F-BMS-986327) has entered phase Ⅰ clinical trials for positron emission tomography (PET) imaging of idiopathic pulmonary fibrosis. This article provides an extensive review on the current status of ligand development targeting LPA receptors to modulate LPA signaling and their therapeutic potential in various diseases.


Asunto(s)
Desarrollo de Medicamentos , Receptores del Ácido Lisofosfatídico/agonistas , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Animales , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos/métodos , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Receptores del Ácido Lisofosfatídico/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
8.
Bioorg Chem ; 99: 103821, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32279036

RESUMEN

A number of new fluorescent nucleic acid binding ligands were synthesized by utilizing the non-specific thiazole orange dye as the basic scaffold for molecular design. Under simple synthetic conditions, the molecular scaffold of thiazole orange bridged with a terminal side-group (phenol or methoxybenzene) becomes more flexible because the newly added ethylene bridge is relatively less rigid than the methylene of thiazole orange. It was found that these molecules showed better selectivity towards G-quadruplex DNA structure in molecular interactions with different type of nucleic acids. The difference in terms of induced DNA-ligand interaction signal, selectivity, and binding affinity of the ligands with the representative nucleic acids including single-stranded DNA, double-stranded DNA, telomere and promoter G4-DNA and ribosomal RNA were investigated. The position of the terminal methoxyl groups was found showing strong influence both on binding affinity and fluorescent discrimination among 19 nucleic acids tested. The ligand with a methoxyl group substituted at the meta-position of the styryl moiety exhibited the best fluorescent recognition performance towards telo21 G4-DNA. A good linear relationship between the induced fluorescent binding signal and the concentration of telo21 was obtained. The comparison of ligand-DNA interaction properties including equilibrium binding constants, molecular docking, G4-conformation change and stabilization ability for G4-structures was also conducted. Two cancer cell lines (human prostate cancer cell (PC3) and human hepatoma cell (hepG2)) were selected to explore the inhibitory effect of the ligands on the cancer cell growth. The IC50 values obtained in the MTT assay for the two cancer cells were found in the range of 3.4-10.8 µM.


Asunto(s)
Anisoles/química , Antineoplásicos/química , ADN/química , Colorantes Fluorescentes/química , Fenoles/química , Anisoles/síntesis química , Anisoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , G-Cuádruplex , Células Hep G2 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Células PC-3 , Fenoles/síntesis química , Fenoles/farmacología , Relación Estructura-Actividad
9.
Nucleic Acids Res ; 43(14): 6677-91, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26117539

RESUMEN

c-MYC is an important oncogene that is considered as an effective target for anticancer therapy. Regulation of this gene's transcription is one avenue for c-MYC-targeting drug design. Direct binding to a transcription factor and generating the intervention of a transcriptional programme appears to be an effective way to modulate gene transcription. NM23-H2 is a transcription factor for c-MYC and is proven to be related to the secondary structures in the promoter. Here, we first screened our small-molecule library for NM23-H2 binders and then sifted through the inhibitors that could target and interfere with the interaction process between NM23-H2 and the guanine-rich promoter sequence of c-MYC. As a result, a quinazolone derivative, SYSU-ID-01: , showed a significant interference effect towards NM23-H2 binding to the guanine-rich promoter DNA sequence. Further analyses of the compound-protein interaction and the protein-DNA interaction provided insight into the mode of action for SYSU-ID-01: . Cellular evaluation results showed that SYSU-ID-01: could abrogate NM23-H2 binding to the c-MYC promoter, resulting in downregulation of c-MYC transcription and dramatically suppressed HeLa cell growth. These findings provide a new way of c-MYC transcriptional control through interfering with NM23-H2 binding to guanine-rich promoter sequences by small molecules.


Asunto(s)
Nucleósido Difosfato Quinasas NM23/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Quinazolinonas/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Apoptosis , Células Cultivadas , ADN/metabolismo , Regulación hacia Abajo , Células HeLa , Humanos , Ratones , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Quinazolinonas/química , Bibliotecas de Moléculas Pequeñas
10.
Chemistry ; 21(2): 568-78, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25388204

RESUMEN

ß-Sheets account for over 30 % of all secondary structural conformations found in proteins. The intramolecular hydrogen bonding that exists between the two peptide strands is imperative in maintaining this secondary structure. With the proper design, cyclic peptides may act as scaffolds emulating active ß-sheet regions, enabling investigation of their importance in molecular recognition and protein aggregation. Starting from Fmoc-Lys(Fmoc)-OH, macrocyclic peptides were synthesized on a solid support, with peptide-chain elongation extending from both the alpha and epsilon amines of the lysine. The branching peptides were cyclized with a pyridyl tridentate chelation core followed by coordination using [(99m) Tc/Re(CO)3 (H2 O)3 ](+) . Variable temperature (1) H NMR spectroscopy studies were performed, demonstrating that intramolecular hydrogen bonding exists between the two sides of the uncoordinated macrocyclic peptide scaffolds. Additionally, computational modelling and circular dichroism spectroscopic analysis revealed that the peptide backbone exists in a similar conformation both before and after metal coordination. The ability to seamlessly incorporate a tridentate chelation core into the backbone of a macrocyclic peptide, without disrupting the secondary structure, can greatly assist in the design of metal-centric peptidomimetic imaging agents. This novel integrated imaging probe approach may facilitate the investigation into protein-protein interactions using macrocyclic ß-sheet scaffolds.


Asunto(s)
Compuestos Macrocíclicos/química , Péptidos Cíclicos/química , Renio/química , Tecnecio/química , Compuestos Macrocíclicos/síntesis química , Modelos Moleculares , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Péptidos Cíclicos/síntesis química , Estructura Secundaria de Proteína
11.
ChemMedChem ; : e202400013, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648251

RESUMEN

Metastasis is responsible for about 90 % of cancer deaths. Anti-metastatic drugs, termed as migrastatics, offer a distinctive therapeutic approach to address cancer migration and invasion. However, therapeutic exploitation of metastasis-specific targets remains limited, and the effective prevention and suppression of metastatic cancer continue to be elusive. Lysophosphatidic acid receptor 1 (LPA1) is activated by an endogenous lipid molecule LPA, leading to a diverse array of cellular activities. Previous studies have shown that the LPA/LPA1 axis supports the progression of metastasis for many types of cancer. In this study, we report the synthesis and biological evaluation of fluorine-containing triazole derivatives as potent LPA1 antagonists, offering potential as migrastatic drugs for triple negative breast cancer (TNBC). In particular, compound 12 f, the most potent and highly selective in this series with an IC50 value of 16.0 nM in the cAMP assay and 18.4 nM in the calcium mobilization assay, inhibited cell survival, migration, and invasion in the TNBC cell line. Interestingly, the compound did not induce apoptosis in TNBC cells and demonstrated no cytotoxic effects. These results highlight the potential of LPA1 as a migrastatic target. Consequently, the LPA1 antagonists developed in this study hold promise as potential migrastatic candidates for TNBC.

12.
Biochem Biophys Res Commun ; 433(4): 368-73, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23261425

RESUMEN

The C-5-methylation of cytosine in the CpG islands is an important pattern for epigenetic modification of gene, which plays a key role in regulating gene transcription. G-quadruplex is an unusual DNA secondary structure formed in G-rich regions and is identified as a transcription repressor in some oncogenes, such as c-myc and bcl-2. In the present study, the results from CD spectrum and FRET assay showed that the methylation of cytosine in the CpG islands could induce a conformational change of the G-quadruplex in the P1 promoter of bcl-2, and greatly increase the thermal-stability of this DNA oligomer. Moreover, the methylation of cytosine in the G-quadruplex could protect the structure from the disruption by the complementary strand, showing with the increasing ability to arrest the polymerase in PCR stop assay. This data indicated that the stabilization of the G-quadruplex structure in the CpG islands might be involved in the epigenetical transcriptional regulation for specific genes through the C-5-methylation modification pattern.


Asunto(s)
Epigénesis Genética , G-Cuádruplex , Genes bcl-2 , Regiones Promotoras Genéticas , Dicroismo Circular , Biología Computacional/métodos , Islas de CpG , Citosina/metabolismo , Metilación de ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Reacción en Cadena de la Polimerasa/métodos , Temperatura , Transcripción Genética
13.
J Enzyme Inhib Med Chem ; 28(3): 583-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22380775

RESUMEN

We recently reported that synthetic derivatives of rutaecarpine alkaloid exhibited high acetyl cholinesterase (AChE) inhibitory activity and high selectivity for AChE over butyrylcholinesterases (BuChE). To explore novel effective drugs for the treatment of Alzheimer's disease (AD), in this paper, further research results were presented. Starting from a structure-based drug design, a series of novel 2-(2-indolyl-)-4(3H)-quinazolines derivates were designed and synthesized as the ring-opened analogues of rutaecarpine alkaloid and subjected to pharmacological evaluation as AChE inhibitors. Among them, derivates 3a-c and 3g-h exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE. The structure-activity relationships were discussed and their binding conformation and simultaneous interactions mode were further clarified by kinetic characterization and the molecular docking studies.


Asunto(s)
Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacología , Quinazolinas/química , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Técnicas de Química Sintética , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Alcaloides Indólicos/química , Concentración 50 Inhibidora , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
14.
Comput Methods Programs Biomed ; 238: 107584, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207464

RESUMEN

BACKGROUND AND OBJECTIVE: Patients with rheumatoid arthritis (RA) are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) than healthy population, but there is still no therapeutic strategy available for RA patients with corona virus disease 2019 (COVID-19). Guizhi-Shaoyao-Zhimu decoction (GSZD), Chinese ancient experience decoction, has a significant effect on the treatment of Rheumatism and gout. To prevent RA patients with mild-to-moderate COVID-19 from developing into severe COVID-19, this study explored the potential possibility and mechanism of GSZD in the treatment of this population. METHODS: In this study, we used bioinformatic approaches to explore common pharmacological targets and signaling pathways between RA and mild-to-moderate COVID-19, and to assess the potential mechanisms of in the treatment of patients with both diseases. Beside, molecular docking was used to explore the molecular interactions between GSZD and SARS-CoV-2 related proteins. RESULTS: Results showed that 1183 common targets were found in mild-to-moderate COVID-19 and RA, of which TNF was the most critical target. The crosstalk signaling pathways of the two diseases focused on innate immunity and T cells pathways. In addition, GSZD intervened in RA and mild-to-moderate COVID-19 mainly by regulating inflammation-related signaling pathways and oxidative stress. Twenty hub compounds in GSZD exhibited good binding potential to SARS-CoV-2 spike (S) protein, 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro) and human angiotensin-converting enzyme 2 (ACE2), thereby intervening in viral infection, replication and transcription. CONCLUSIONS: This finding provides a therapeutic option for RA patients against mild-to-moderate COVID-19, but further clinical validation is still needed.


Asunto(s)
Artritis Reumatoide , COVID-19 , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Artritis Reumatoide/tratamiento farmacológico , Biología Computacional
15.
Anal Chem ; 84(15): 6288-92, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22839657

RESUMEN

The rapid and convenient method for identification of all kinds of G-quadruplex is highly desirable. In the present study, a novel colorimetric indicator for a vast variety of G-quadruplex was designed and synthesized on the basis of thiazole orange and isaindigotone skeleton. Its distinct color change enables label-free visual detection of G-quadruplexes, which is due to the disassembly of dye H-aggregates to monomers. This specific detection of G-quadruplex arises from its end-stacking interaction with G-quartet. On the basis of this universal indicator, a facile approach for large-scale identification of G-quadruplex was developed.


Asunto(s)
Alcaloides/química , Benzotiazoles/química , Colorimetría , G-Cuádruplex , Quinazolinas/química , Quinolinas/química , Transferencia Resonante de Energía de Fluorescencia , Indicadores y Reactivos/química
16.
J Comput Aided Mol Des ; 26(12): 1355-68, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23239169

RESUMEN

G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.


Asunto(s)
G-Cuádruplex , Simulación de Dinámica Molecular , Cristalografía por Rayos X , Ligandos , Modelos Químicos , Análisis de Componente Principal
17.
Bioorg Med Chem ; 20(8): 2527-34, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22444876

RESUMEN

A series of isaindigotone derivatives and analogues were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced ß-amyloid (Aß) aggregation. The synthetic compounds had IC(50) values at micro or nano molar range for cholinesterase inhibition, and some compounds exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE, which were much better than the isaindigotone derivatives previously reported by our group. Most of these compounds showed higher self-induced Aß aggregation inhibitory activity than a reference compound curcumin. The structure-activity relationship studies revealed that the derivatives with higher inhibition activity on AChE also showed higher selectivity for AChE over BuChE. Compound 6c exhibiting excellent inhibition for both AChE and self-induced Aß aggregation was further studied using CD, EM, molecular docking and kinetics.


Asunto(s)
Acetilcolinesterasa/metabolismo , Alcaloides/farmacología , Péptidos beta-Amiloides/antagonistas & inhibidores , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Quinazolinas/farmacología , Acetilcolinesterasa/sangre , Alcaloides/síntesis química , Alcaloides/química , Péptidos beta-Amiloides/metabolismo , Animales , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Caballos , Modelos Moleculares , Estructura Molecular , Unión Proteica/efectos de los fármacos , Quinazolinas/síntesis química , Quinazolinas/química , Estereoisomerismo , Relación Estructura-Actividad
18.
Biochem Biophys Res Commun ; 406(3): 454-8, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21333628

RESUMEN

Quindoline derivatives as telomeric quadruplex ligands have shown good biological activity for telomerase inhibition. In the present study, we used spectroscopic and calorimetric methods to investigate the interactions between a quindoline derivative (5-methyl-11-(2-morpholinoethylamino)-10-H-indolo-[3,2-b]quinolin-5-ium iodide, compound 1) and human telomeric G-quadruplex. The thermodynamic studies using isothermal titration calorimetry (ITC) indicated that their binding process was temperature-dependent and enthalpy-entropy co-driven. The significant negative heat capacity was obtained experimentally from the temperature dependence of enthalpy changes, which was consistent with that from theoretical calculation, and all suggesting significant hydrophobic contribution to the molecular recognition process. Based on the results from UV-vis, ITC, steady-state and time-resolved fluorescence, their binding mode was determined as two ligand molecules stacking on the quartets on both ends of the quadruplex. These results shed light on rational design and development of quindoline derivatives as G-quadruplex binding ligands.


Asunto(s)
Alcaloides/química , G-Cuádruplex , Indoles/química , Quinolinas/química , Compuestos de Quinolinio/química , Telómero/química , Calorimetría , Humanos , Ligandos , Espectrometría de Fluorescencia
19.
Org Biomol Chem ; 9(8): 2975-86, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21373680

RESUMEN

A series of 2-phenyl-benzopyranopyrimidine (PBPP) derivatives with alkylamino side chains were synthesized and found to be a new type of highly selective ligand to bind with telomeric G-quadruplex DNA, and their biological properties were reported for the first time. Their interactions with telomeric G-quadruplex DNA were studied with FRET melting, surface plasmon resonance, CD spectroscopy, and molecular modeling. Our results showed that the disubstituted PBPP derivatives could strongly bind to and effectively stabilize the telomeric G-quadruplex structure, and had significant selectivity for G-quadruplex over duplex DNA. In comparison, the mono substituted derivatives had much less effect on the G-quadruplex, suggesting that the disubstitution of PBPP is essential for its interaction with the G-quadruplex. Furthermore, telomerase inhibition of the PBPP derivatives and their cellular effects were studied, and compound 11b was found to be the most promising compound as a telomerase inhibitor and telomeric G-quadruplex binding ligand for further development for cancer treatment.


Asunto(s)
Benzopiranos/química , G-Cuádruplex , Pirimidinas/química , Telómero/química , Benzopiranos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Ligandos , Modelos Moleculares , Pirimidinas/farmacología , Telomerasa/antagonistas & inhibidores
20.
Org Biomol Chem ; 9(18): 6422-36, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21808792

RESUMEN

G-quadruplex structures are a new class of attractive targets for DNA-interactive anticancer agents. The primary building block of this structure is the G-quartet, which is composed of four coplanar guanines and serves as the major binding site for small molecules. NMR studies and molecular dynamics simulations have suggested that the planarity of G-quartet surface has been highly dynamic in solution. To better investigate how the planarity of unfused aromatic ligand impacts on its quadruplex binding properties, a variety of planarity controllable isaindigotone derivatives were designed and synthesized. The interaction of G-quadruplex DNA with these designed ligands was systematically explored using a series of biophysical studies. The FRET-melting, SPR, and CD spectroscopy results showed that reducing the planarity of their unfused aromatic core resulted in their decreased binding affinity and stabilization ability for G-quadruplex. NMR studies also suggested that these compounds could stack on the G-quartet surface. Such results are in parallel with subsequent molecular modeling studies. A detailed binding energy analysis indicated that van der Waals energy (ΔE(vdw)) and entropy (TΔS) are responsible for their decreased quadruplex binding and stabilization effect. All these results provided insight information about how quadruplex recognition could be controlled by adjusting the planarity of ligands, which shed light on further development of unfused aromatic molecules as optimal G-quadruplex binding ligands.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , ADN/metabolismo , G-Cuádruplex , Quinazolinas/química , Quinazolinas/farmacología , Sitios de Unión , Dicroismo Circular , ADN/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA