Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 14(2): e0200048, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30735488

RESUMEN

Sociality has brought many advantages to various hymenoptera species, including their ability of regulating physical factors in their nest (e.g., temperature). Although less studied, humidity is known to be important for egg, larval and pupal development, and also for nectar concentration. Two subspecies of Apis mellifera of the M evolutionary lineage were used as models to test the ability of a superorganism (i.e. honeybee colony) to regulate the humidity in its nest (i.e. "hygroregulation hypothesis") in four conservation centers: two in France (A. m. mellifera) and two in Portugal (A. m. iberiensis). We investigated the ability of both subspecies to regulate the humidity in hives daily, but also during the seasons for one complete year. Our data and statistical analysis demonstrated the capacity of the bees to regulate humidity in their hive, regardless of the day, season or subspecies. Furthermore, the study showed that humidity in beehives is stable even during winter, when brood is absent, and when temperature is known to be less stable in the beehives. These results suggest that humidity is important for honeybees at every life stage, maybe because of the 'imprint' of the evolutionary history of this hymenopteran lineage.


Asunto(s)
Abejas/metabolismo , Animales , Francia , Humedad , Insectos , Larva/metabolismo , Portugal , Estaciones del Año , Temperatura
2.
Sci Total Environ ; 627: 822-834, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426207

RESUMEN

Agriculture is currently facing unprecedented challenges: ensuring food, fiber and energy production in the face of global change, maintaining the economic performance of farmers and preserving natural resources such as biodiversity and associated key ecosystem services for sustainable agriculture. Addressing these challenges requires innovative landscape scale farming systems that account for changing economic and environmental targets. These novel agricultural systems need to be recognized, accepted and promoted by all stakeholders, including local residents, and supported by public policies. Agroecosystems should be considered as socio-ecological systems and alternative farming systems should be based on ecological principles while taking societal needs into account. This requires an in-depth knowledge of the multiple interactions between sociological and ecological dynamics. Long Term Socio-Ecological Research platforms (LTSER) are ideal for acquiring this knowledge as they (i) are not constrained by traditional disciplinary boundaries, (ii) operate at a large spatial scale involving all stakeholders, and (iii) use systemic approaches to investigate biodiversity and ecosystem services. This study presents the socio-ecological research strategy from the LTSER "Zone Atelier Plaine & Val de Sèvre" (ZA PVS), a large study area where data has been sampled since 1994. Its global aim is to identify effective solutions for agricultural development and the conservation of biodiversity in farmlands. Three main objectives are targeted by the ZAPVS. The first objective is intensive monitoring of landscape features, the main taxa present and agricultural practices. The second objective is the experimental investigation, in real fields with local farmers, of important ecosystem functions and services, in relation to pesticide use, crop production and farming socio-economic value. The third aim is to involve stakeholders through participatory research, citizen science and the dissemination of scientific results. This paper underlines the relevance of LTSERs for addressing agricultural challenges, while acknowledging that there are some yet unsolved key challenges.

3.
Data Brief ; 19: 1310-1313, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30225290

RESUMEN

Understanding the response of biodiversity to management, land use and climate change is a major challenge in farmland to halt the decline of biodiversity. Farmlands shelter a wide variety of taxa, which vary in their life cycle and habitat niches. Consequently, monitoring biodiversity from sessile annual plants to migratory birds requires dedicated protocols. In this article, we describe the protocols applied in a long-term research platform, the LTSER Zone Atelier "Plaine & Val de Sèvre" (for a full description see Bretagnolle et al. (2018) [1]). We present the data in the form of the description of monitoring protocols, which has evolved through time for arable weeds, grassland plants, ground beetles, spiders, grasshoppers, wild bees, hoverflies, butterflies, small mammals, and farmland birds (passerines, owls and various flagship species).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA