Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Mol Recognit ; 24(4): 724-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21472814

RESUMEN

Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.


Asunto(s)
Proteínas Anticongelantes Tipo III/química , Hielo , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Difracción de Neutrones , Neutrones
2.
J Biomol Struct Dyn ; 39(10): 3459-3468, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32448092

RESUMEN

Crystallographic data comes from a space-time average over all the unit cells within the crystal, so dynamic phenomena do not contribute significantly to the diffraction data. Many efforts have been made to reconstitute the movement of the macromolecules and explore the microstates that the confined proteins can adopt in the crystalline network. We explored different strategies to simulate a heart fatty acid binding protein (H-FABP) crystal by means of Molecular Dynamics (MD) simulations. We evaluate the effect of introducing restraints according to experimental isotropic B-factors and we analyzed the H-FABP motions in the crystal using Principal Component Analysis (PCA), isotropic and anisotropic B-factors. We compared the behavior of the protein simulated in the crystal confinement versus in solution, and we observed the effect of that confinement in the mobility of the protein residues. Restraining one-third of Cα atoms based on experimental B-factors produce lower B-factors than simulations without restraints, showing that the position restraint of the atoms with the lowest experimental B-factor is a good strategy to maintain the geometry of the crystal with an obvious decrease in the degrees of motion of the protein. PCA shows that, as position restraint reduces the conformational space explored by the system, the motion of the crystal is better recovered, for an essential subspace of the same size, in the simulations without restraints. Restraining only one Cα seems to be a good balance between giving flexibility to the system and preserving its structure. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Proteína 3 de Unión a Ácidos Grasos , Análisis de Componente Principal , Conformación Proteica
3.
Biophys J ; 99(2): 609-18, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20643081

RESUMEN

It has been suggested that above a critical protein concentration, fish Type III antifreeze protein (AFP III) self-assembles to form micelle-like structures that may play a key role in antifreeze activity. To understand the complex activity of AFP III, a comprehensive description of its association state and structural organization in solution is necessary. We used analytical ultracentrifugation, analytical size-exclusion chromatography, and dynamic light scattering to characterize the interactions and homogeneity of AFP III in solution. Small-angle neutron scattering was used to determine the low-resolution structure in solution. Our results clearly show that at concentrations up to 20 mg mL(-1) and at temperatures of 20 degrees C, 6 degrees C, and 4 degrees C, AFP III is monomeric in solution and adopts a structure compatible with that determined by crystallography. Surface tension measurements show a propensity of AFP III to localize at the air/water interface, but this surface activity is not correlated with any aggregation in the bulk. These results support the hypothesis that each AFP III molecule acts independently of the others, and that specific intermolecular interactions between monomers are not required for binding to ice. The lack of attractive interactions between monomers may be functionally important, allowing for more efficient binding and covering of the ice surface.


Asunto(s)
Proteínas Anticongelantes Tipo III/química , Proteínas Anticongelantes Tipo III/metabolismo , Aire , Animales , Cromatografía en Gel , Luz , Modelos Moleculares , Peso Molecular , Difracción de Neutrones , Dispersión de Radiación , Dispersión del Ángulo Pequeño , Soluciones , Tensión Superficial , Ultracentrifugación , Agua/química
4.
J Med Chem ; 62(17): 8164-8177, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408339

RESUMEN

Recent efforts to identify new highly potent arginase inhibitors have resulted in the discovery of a novel family of (3R,4S)-3-amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid analogues with up to a 1000-fold increase in potency relative to the current standards, 2-amino-6-boronohexanoic acid (ABH) and N-hydroxy-nor-l-arginine (nor-NOHA). The lead candidate, with an N-2-amino-3-phenylpropyl substituent (NED-3238), example 43, inhibits arginase I and II with IC50 values of 1.3 and 8.1 nM, respectively. Herein, we report the design, synthesis, and structure-activity relationships for this novel series of inhibitors, along with X-ray crystallographic data for selected examples bound to human arginase II.


Asunto(s)
Arginasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Pirrolidinas/farmacología , Arginasa/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad
5.
J Med Chem ; 56(6): 2568-80, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23472952

RESUMEN

Recent efforts to identify treatments for myocardial ischemia reperfusion injury have resulted in the discovery of a novel series of highly potent α,α-disubstituted amino acid-based arginase inhibitors. The lead candidate, (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid, compound 9, inhibits human arginases I and II with IC50s of 223 and 509 nM, respectively, and is active in a recombinant cellular assay overexpressing human arginase I (CHO cells). It is 28% orally bioavailable and significantly reduces the infarct size in a rat model of myocardial ischemia/reperfusion injury. Herein, we report the design, synthesis, and structure-activity relationships (SAR) for this novel series of inhibitors along with pharmacokinetic and in vivo efficacy data for compound 9 and X-ray crystallography data for selected lead compounds cocrystallized with arginases I and II.


Asunto(s)
Aminoácidos/química , Aminoácidos/farmacología , Arginasa/antagonistas & inhibidores , Compuestos de Boro/química , Compuestos de Boro/farmacología , Caproatos/química , Caproatos/farmacología , Descubrimiento de Drogas , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Aminoácidos/farmacocinética , Aminoácidos/uso terapéutico , Animales , Arginasa/química , Compuestos de Boro/farmacocinética , Compuestos de Boro/uso terapéutico , Células CHO , Caproatos/farmacocinética , Caproatos/uso terapéutico , Cricetinae , Cricetulus , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Masculino , Modelos Moleculares , Conformación Proteica , Ratas , Relación Estructura-Actividad
6.
J Biol Phys ; 33(5-6): 389-97, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19669526

RESUMEN

Antifreeze proteins (AFPs) are ice-binding proteins that depress the freezing point of water in a non-colligative manner without a significant modification of the melting point. Found in the blood and tissues of some organisms (such as fish, insects, plants, and soil bacteria), AFPs play an important role in subzero temperature survival. Fish Type III AFP is present in members of the subclass Zoarcoidei. AFPIII are small 7-kDa-or 14-kDa tandem-globular proteins. In the present work, we study the behavior of several physical properties, such as the low-frequency dielectric permittivity spectrum, circular dichroism, and electrical conductivity of Fish Type III AFP solutions measured at different concentrations. The combination of the information obtained from these measurements could be explained through the formation of AFP molecular aggregates or, alternatively, by the existence of some other type of interparticle interactions. Thermal stability and electro-optical behavior, when proteins are dissolved in deuterated water, were also investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA