Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 614(7946): 160-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697828

RESUMEN

The dynamic ribosome-translocon complex, which resides at the endoplasmic reticulum (ER) membrane, produces a major fraction of the human proteome1,2. It governs the synthesis, translocation, membrane insertion, N-glycosylation, folding and disulfide-bond formation of nascent proteins. Although individual components of this machinery have been studied at high resolution in isolation3-7, insights into their interplay in the native membrane remain limited. Here we use cryo-electron tomography, extensive classification and molecular modelling to capture snapshots of mRNA translation and protein maturation at the ER membrane at molecular resolution. We identify a highly abundant classical pre-translocation intermediate with eukaryotic elongation factor 1a (eEF1a) in an extended conformation, suggesting that eEF1a may remain associated with the ribosome after GTP hydrolysis during proofreading. At the ER membrane, distinct polysomes bind to different ER translocons specialized in the synthesis of proteins with signal peptides or multipass transmembrane proteins with the translocon-associated protein complex (TRAP) present in both. The near-complete atomic model of the most abundant ER translocon variant comprising the protein-conducting channel SEC61, TRAP and the oligosaccharyltransferase complex A (OSTA) reveals specific interactions of TRAP with other translocon components. We observe stoichiometric and sub-stoichiometric cofactors associated with OSTA, which are likely to include protein isomerases. In sum, we visualize ER-bound polysomes with their coordinated downstream machinery.


Asunto(s)
Retículo Endoplásmico , Membranas Intracelulares , Biosíntesis de Proteínas , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Ribosomas/metabolismo , Canales de Translocación SEC/metabolismo , Membranas Intracelulares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Guanosina Trifosfato/metabolismo , Complejos Multiproteicos/metabolismo
2.
EMBO J ; 40(7): e107410, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33694216

RESUMEN

Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.


Asunto(s)
Cola del Espermatozoide/ultraestructura , Animales , Axonema/ultraestructura , Movimiento Celular , Centriolos/ultraestructura , Cilios/fisiología , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Caballos , Masculino , Ratones , Ratones Endogámicos C57BL , Cola del Espermatozoide/fisiología , Porcinos
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34737233

RESUMEN

Mitochondria-cytoskeleton interactions modulate cellular physiology by regulating mitochondrial transport, positioning, and immobilization. However, there is very little structural information defining mitochondria-cytoskeleton interfaces in any cell type. Here, we use cryofocused ion beam milling-enabled cryoelectron tomography to image mammalian sperm, where mitochondria wrap around the flagellar cytoskeleton. We find that mitochondria are tethered to their neighbors through intermitochondrial linkers and are anchored to the cytoskeleton through ordered arrays on the outer mitochondrial membrane. We use subtomogram averaging to resolve in-cell structures of these arrays from three mammalian species, revealing they are conserved across species despite variations in mitochondrial dimensions and cristae organization. We find that the arrays consist of boat-shaped particles anchored on a network of membrane pores whose arrangement and dimensions are consistent with voltage-dependent anion channels. Proteomics and in-cell cross-linking mass spectrometry suggest that the conserved arrays are composed of glycerol kinase-like proteins. Ordered supramolecular assemblies may serve to stabilize similar contact sites in other cell types in which mitochondria need to be immobilized in specific subcellular environments, such as in muscles and neurons.


Asunto(s)
Citoesqueleto/ultraestructura , Mitocondrias/ultraestructura , Espermatozoides/ultraestructura , Animales , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Caballos , Masculino , Ratones , Porcinos
4.
NMR Biomed ; 32(3): e4059, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30657204

RESUMEN

The in vivo evaluation of soft biomaterial implant remodeling routinely requires the surgical removal of the implant for subsequent histological assessment of tissue ingrowth and scaffold remodeling. This approach is very resource intensive, often destructive, and imposes practical limitations on how effectively these materials can be evaluated. MRI has the potential to non-invasively monitor the remodeling of implanted collagen scaffolds in real time. This study investigated the development of a model system to characterize the cellular infiltration, void area fraction, and angiogenesis in collagen scaffold implants using T2 relaxation time and apparent diffusion coefficient (ADC) maps along with conventional histological techniques. Initial correlations found statistically significant relationships between the MRI and histological parameters for various regions of the implanted sponges: T2 versus cell density (r ≈ -0.83); T2 versus void area fraction (r ≈ +0.78); T2 versus blood vessel density (r ≈ +0.95); ADC versus cell density (r ≈ -0.77); and ADC versus void area fraction (r ≈ +0.84). This suggests that MRI is sensitive to specific remodeling parameters and has the potential to serve as a non-invasive tool to monitor the remodeling of implanted collagen scaffolds, and to ultimately assess the ability of these scaffolds to regenerate the functional properties of damaged tissues such as tendons, ligaments, skin or skeletal muscle.


Asunto(s)
Colágeno/farmacología , Imagen por Resonancia Magnética , Andamios del Tejido/química , Animales , Bovinos , Implantes Experimentales , Masculino , Ratas Sprague-Dawley
5.
Proc Natl Acad Sci U S A ; 113(34): 9430-9, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27493215

RESUMEN

Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å-resolution cryo-EM structure of monomeric PRC1 bound to MTs. Residues in the spectrin domain of PRC1 contacting the MT are highly conserved and interact with the same pocket recognized by kinesin. We additionally found that PRC1 promotes MT assembly even in the presence of the MT stabilizer taxol. Interestingly, the angle of the spectrin domain on the MT surface corresponds to the previously observed cross-bridge angle between MTs cross-linked by full-length, dimeric PRC1. This finding, together with molecular dynamic simulations describing the intrinsic flexibility of PRC1, suggests that the MT-spectrin domain interface determines the geometry of the MT arrays cross-linked by PRC1.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cinesinas/ultraestructura , Microtúbulos/ultraestructura , Subunidades de Proteína/química , Tubulina (Proteína)/ultraestructura , Secuencias de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Expresión Génica , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Paclitaxel/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Porcinos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
6.
J Phys Chem C Nanomater Interfaces ; 126(36): 15280-15297, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36147520

RESUMEN

The formation mechanisms of colloidal magic-size semiconductor nanostructures have remained obscure. Herein, we report the room temperature synthesis of three species of ultrathin CdTe magic-size nanowires (MSNWs) with diameters of 0.7 ± 0.1 nm, 0.9 ± 0.2 nm, and 1.1 ± 0.2 nm, and lowest energy exciton transitions at 373, 418, and 450 nm, respectively. The MSNWs are obtained from Cd(oleate)2 and TOP-Te, provided diphenylphosphine and a primary alkylamine (RNH2) are present at sufficiently high concentrations, and exhibit sequential, discontinuous growth. The population of each MSNW species is entirely determined by the RNH2 concentration [RNH2] so that single species are only obtained at specific concentrations, while mixtures are obtained at concentrations intermediate between the specific ones. Moreover, the MSNWs remain responsive to [RNH2], interconverting from thinner to thicker upon [RNH2] decrease and from thicker to thinner upon [RNH2] increase. Our results allow us to propose a mechanism for the formation and interconversion of CdTe MSNWs and demonstrate that primary alkylamines play crucial roles in all four elementary kinetic steps (viz., monomer formation, nucleation, growth in length, and interconversion between species), thus being the decisive element in the creation of a reaction pathway that leads exclusively to CdTe MSNWs. The insights provided by our work thus contribute toward unravelling the mechanisms behind the formation of shape-controlled and atomically precise magic-size semiconductor nanostructures.

7.
Cell Rep Methods ; 2(5): 100220, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35637912

RESUMEN

We present a bimodal endocytic tracer, fluorescent BSA-gold (fBSA-Au), as a fiducial marker for 2D and 3D correlative light and electron microscopy (CLEM) applications. fBSA-Au consists of colloidal gold (Au) particles stabilized with fluorescent BSA. The conjugate is efficiently endocytosed and distributed throughout the 3D endolysosomal network of cells and has an excellent visibility in both fluorescence microscopy (FM) and electron microscopy (EM). We demonstrate that fBSA-Au facilitates rapid registration in several 2D and 3D CLEM applications using Tokuyasu cryosections, resin-embedded material, and cryoelectron microscopy (cryo-EM). Endocytosed fBSA-Au benefits from a homogeneous 3D distribution throughout the endosomal system within the cell, does not obscure any cellular ultrastructure, and enables accurate (50-150 nm) correlation of fluorescence to EM data. The broad applicability and visibility in both modalities makes fBSA-Au an excellent endocytic fiducial marker for 2D and 3D (cryo)CLEM applications.


Asunto(s)
Crioultramicrotomía , Microscopía por Crioelectrón/métodos , Microscopía Electrónica , Microscopía Fluorescente/métodos , Crioultramicrotomía/métodos
8.
Anal Chem ; 83(6): 2279-85, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21344864

RESUMEN

We report a method for combining the detection of single molecules (digital) and an ensemble of molecules (analog) that is capable of detecting enzyme label from 10(-19) M to 10(-13) M, for use in high sensitivity enzyme-linked immunosorbent assays (ELISA). The approach works by capturing proteins on microscopic beads, labeling the proteins with enzymes using a conventional multistep immunosandwich approach, isolating the beads in an array of 50-femtoliter wells (Single Molecule Array, SiMoA), and detecting bead-associated enzymatic activity using fluorescence imaging. At low concentrations of proteins, when the ratio of enzyme labels to beads is less than ∼1.2, beads carry either zero or low numbers of enzymes, and protein concentration is quantified by counting the presence of "on" or "off" beads (digital regime). (1) At higher protein concentrations, each bead typically carries multiple enzyme labels, and the average number of enzyme labels present on each bead is quantified from a measure of the average fluorescence intensity (analog regime). Both the digital and analog concentration ranges are quantified by a common unit, namely, average number of enzyme labels per bead (AEB). By combining digital and analog detection of singulated beads, a linear dynamic range of over 6 orders of magnitude to enzyme label was achieved. Using this approach, an immunoassay for prostate specific antigen (PSA) was developed. The combined digital and analog PSA assay provided linear response over approximately four logs of concentration ([PSA] from 8 fg/mL to 100 pg/mL or 250 aM to 3.3 pM). This approach extends the dynamic range of ELISA from picomolar levels down to subfemtomolar levels in a single measurement.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Animales , Bovinos , Humanos , Límite de Detección , Masculino , Microesferas , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/metabolismo , Factores de Tiempo , beta-Galactosidasa/metabolismo
9.
ChemSusChem ; 14(23): 5328-5335, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34668343

RESUMEN

Nature provides much inspiration for the design of multistep conversion processes, with numerous reactions running simultaneously and without interference in cells, for example. A key challenge in mimicking nature's strategies is to compartmentalize incompatible reagents and catalysts, for example, for tandem catalysis. Here, we present a new strategy for antagonistic catalyst compartmentalization. The synthesis of bifunctional Janus catalyst particles carrying acid and base groups on the particle's opposite patches is reported as is their application as acid-base catalysts in oil/water emulsions. The synthesis strategy involved the use of monodisperse, hydrophobic and amine-functionalized silica particles (SiO2 -NH2 -OSi(CH3 )3 ) to prepare an oil-in-water Pickering emulsion (PE) with molten paraffin wax. After solidification, the exposed patch of the silica particles was selectively etched and refunctionalized with acid groups to yield acid-base Janus particles (Janus A-B). These materials were successfully applied in biphasic Pickering interfacial catalysis for the tandem dehydration-Knoevenagel condensation of fructose to 5-(hydroxymethyl)furfural-2-diethylmalonate (5-HMF-DEM) in a water/4-propylguaiacol PE. The results demonstrate the advantage of rapid extraction of 5-hydroxymethylfurfural (5-HMF), a prominent platform molecule prone to side product formation in acidic media. A simple strategy to tune the acid/base balance using PE with both Janus A-B and monofunctional SiO2 -NH2 -OSi(CH3 )3 base catalysts proved effective for antagonistic tandem catalysis.

10.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958322

RESUMEN

The emergence of SARS-CoV-2 antibody escape mutations highlights the urgent need for broadly neutralizing therapeutics. We previously identified a human monoclonal antibody, 47D11, capable of cross-neutralizing SARS-CoV-2 and SARS-CoV and protecting against the associated respiratory disease in an animal model. Here, we report cryo-EM structures of both trimeric spike ectodomains in complex with the 47D11 Fab. 47D11 binds to the closed receptor-binding domain, distal to the ACE2 binding site. The CDRL3 stabilizes the N343 glycan in an upright conformation, exposing a mutationally constrained hydrophobic pocket, into which the CDRH3 loop inserts two aromatic residues. 47D11 stabilizes a partially open conformation of the SARS-CoV-2 spike, suggesting that it could be used effectively in combination with other antibodies targeting the exposed receptor-binding motif. Together, these results reveal a cross-protective epitope on the SARS-CoV-2 spike and provide a structural roadmap for the development of 47D11 as a prophylactic or postexposure therapy for COVID-19.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Relación Estructura-Actividad
11.
Curr Opin Microbiol ; 43: 132-138, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29414444

RESUMEN

Understanding how microbes utilize their environment is aided by visualizing them in their natural context at high resolution. Correlative imaging enables efficient targeting and identification of labelled viral and bacterial components by light microscopy combined with high resolution imaging by electron microscopy. Advances in genetic and bioorthogonal labelling, improved workflows for targeting and image correlation, and large-scale data collection are increasing the applicability of correlative imaging methods. Furthermore, developments in mass spectroscopy and soft X-ray imaging are expanding the correlative imaging modalities available. Investigating the structure and organization of microbes within their host by combined imaging methods provides important insights into mechanisms of infection and disease which cannot be obtained by other techniques.


Asunto(s)
Interacciones Microbiota-Huesped , Microscopía Electrónica/métodos , Microscopía/métodos , Imagen Individual de Molécula/instrumentación , Bacterias/ultraestructura , Enfermedades Transmisibles/microbiología , Humanos , Espectrometría de Masas , Microscopía/instrumentación , Microscopía Electrónica/instrumentación , Imagen Individual de Molécula/métodos , Virus/ultraestructura
12.
Cell Cycle ; 17(3): 278-287, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29278985

RESUMEN

The cytoskeleton of eukaryotic cells relies on microtubules to perform many essential functions. We have previously shown that, in spite of the overall conservation in sequence and structure of tubulin subunits across species, there are differences between mammalian and budding yeast microtubules with likely functional consequences for the cell. Here we expand our structural and function comparison of yeast and porcine microtubules to show different distribution of protofilament number in microtubules assembled in vitro from these two species. The different geometry at lateral contacts between protofilaments is likely due to a more polar interface in yeast. We also find that yeast tubulin forms longer and less curved oligomers in solution, suggesting stronger tubulin:tubulin interactions along the protofilament. Finally, we observed species-specific plus-end tracking activity for EB proteins: yeast Bim1 tracked yeast but not mammalian MTs, and human EB1 tracked mammalian but not yeast MTs. These findings further demonstrate that subtle sequence differences in tubulin sequence can have significant structural and functional consequences in microtubule structure and behavior.


Asunto(s)
Encéfalo/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Saccharomycetales/metabolismo , Saccharomycetales/ultraestructura , Animales , Especificidad de la Especie , Porcinos , Tubulina (Proteína)/metabolismo
13.
Science ; 359(6377): 794-797, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29449492

RESUMEN

Danger patterns on microbes or damaged host cells bind and activate C1, inducing innate immune responses and clearance through the complement cascade. How these patterns trigger complement initiation remains elusive. Here, we present cryo-electron microscopy analyses of C1 bound to monoclonal antibodies in which we observed heterogeneous structures of single and clustered C1-immunoglobulin G1 (IgG1) hexamer complexes. Distinct C1q binding sites are observed on the two Fc-CH2 domains of each IgG molecule. These are consistent with known interactions and also reveal additional interactions, which are supported by functional IgG1-mutant analysis. Upon antibody binding, the C1q arms condense, inducing rearrangements of the C1r2s2 proteases and tilting C1q's cone-shaped stalk. The data suggest that C1r may activate C1s within single, strained C1 complexes or between neighboring C1 complexes on surfaces.


Asunto(s)
Alarminas/química , Activación de Complemento , Complemento C1/química , Inmunoglobulina G/química , Alarminas/ultraestructura , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/ultraestructura , Sitios de Unión , Complemento C1/ultraestructura , Microscopía por Crioelectrón , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/ultraestructura
14.
J Cell Biol ; 216(9): 2669-2677, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28652389

RESUMEN

Microtubules are polymers of αß-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end-tracking protein Bim1 binds yeast microtubules both between αß-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. Our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.


Asunto(s)
Microscopía por Crioelectrón , Microtúbulos/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Tubulina (Proteína)/ultraestructura , Animales , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Guanosina Trifosfato/metabolismo , Hidrólisis , Proteínas de Microtúbulos/metabolismo , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/genética , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Sus scrofa , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
J Mol Biol ; 429(5): 633-646, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28104363

RESUMEN

A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9-4.2Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on ß-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the "seam" of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam) contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Microscopía por Crioelectrón , Microtúbulos/química , Taxoides/química , Antineoplásicos/química , Sitios de Unión , Procesamiento de Imagen Asistido por Computador , Macrólidos/química , Paclitaxel/química , Proteínas/química , Tubulina (Proteína)/química
16.
Dev Cell ; 37(1): 72-84, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27046833

RESUMEN

The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. Here, we purify and characterize tubulin heterodimers that have human ß-tubulin isotype III (TUBB3), as well as heterodimers with one of two ß-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Sitios de Unión/genética , Línea Celular , Humanos , Espectrometría de Masas , Mutación Puntual/genética , Polimerizacion , Unión Proteica/genética , Conformación Proteica , Estructura Terciaria de Proteína
17.
Mol Biol Cell ; 25(2): 257-66, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24227885

RESUMEN

Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the interaction sites of most MAPs and motors. We investigate whether acetylation alters the architecture of microtubules or the conformation of tubulin, using cryo-electron microscopy (cryo-EM). No significant changes are observed based on protofilament distributions or microtubule helical lattice parameters. Furthermore, no clear differences in tubulin structure are detected between cryo-EM reconstructions of maximally deacetylated or acetylated microtubules. Our results indicate that the effect of acetylation must be highly localized and affect interaction with proteins that bind directly to the lumen of the microtubule. We also investigate the interaction of the tubulin acetyltransferase, αTAT1, with microtubules and find that αTAT1 is able to interact with the outside of the microtubule, at least partly through the tubulin C-termini. Binding to the outside surface of the microtubule could facilitate access of αTAT1 to its luminal site of action if microtubules undergo lateral opening between protofilaments.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Acetiltransferasas/biosíntesis , Animales , Microscopía por Crioelectrón , Escherichia coli , Cinesinas/química , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , Porcinos , Tubulina (Proteína)/química
18.
Nat Nanotechnol ; 9(9): 693-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25086603

RESUMEN

Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells. Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears--speed up, slow down or switch directions--when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport.


Asunto(s)
Cinesinas/metabolismo , Luz , Movimiento (Física) , Miosinas/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Avena/química , Avena/metabolismo , Transporte Biológico , Chara/química , Chara/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Dictyostelium/química , Dictyostelium/metabolismo , Drosophila/química , Drosophila/metabolismo , Cinesinas/química , Cinética , Modelos Moleculares , Miosinas/química , Estructura Terciaria de Proteína , Porcinos
19.
J Mol Biol ; 425(22): 4427-41, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23892111

RESUMEN

CENP-E (centromere protein E) and CENP-F (centromere protein F), also known as mitosin, are large, multi-functional proteins associated with the outer kinetochore. CENP-E features a well-characterized kinesin motor domain at its N-terminus and a second microtubule-binding domain at its C-terminus of unknown function. CENP-F is important for the formation of proper kinetochore-microtubule attachment and, similar to CENP-E, contains two microtubule-binding domains at its termini. While the importance of these proteins is known, the details of their interactions with microtubules have not yet been investigated. We have biochemically and structurally characterized the microtubule-binding properties of the amino- and carboxyl-terminal domains of CENP-F as well as the carboxyl-terminal (non-kinesin) domain of CENP-E. CENP-E's C-terminus and CENP-F's N-terminus bind microtubules with similar affinity to the well-characterized Ndc80 complex, while CENP-F's C-terminus shows much lower affinity. Electron microscopy analysis reveals that all of these domains engage the microtubule surface in a disordered manner, suggesting that these factors have no favored binding geometry and may allow for initial side-on attachments early in mitosis.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas de Microfilamentos/química , Microtúbulos/química , Dominios y Motivos de Interacción de Proteínas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Cinética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Unión Proteica , Multimerización de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
20.
Mol Biol Cell ; 22(22): 4335-42, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21965284

RESUMEN

All eukaryotic cells must segregate their chromosomes equally between two daughter cells at each division. This process needs to be robust, as errors in the form of loss or gain of genetic material have catastrophic effects on viability. Chromosomes are captured, aligned, and segregated to daughter cells via interaction with spindle microtubules mediated by the kinetochore. In Saccharomyces cerevisiae one microtubule attaches to each kinetochore, requiring extreme processivity from this single connection. The yeast Dam1 complex, an essential component of the outer kinetochore, forms rings around microtubules and in vitro recapitulates much of the functionality of a kinetochore-microtubule attachment. To understand the mechanism of the Dam1 complex at the kinetochore, we must know how it binds to microtubules, how it assembles into rings, and how assembly is regulated. We used electron microscopy to map several subunits within the structure of the Dam1 complex and identify the organization of Dam1 complexes within the ring. Of importance, new data strongly support a more passive role for the microtubule in Dam1 ring formation. Integrating this information with previously published data, we generated a structural model for the Dam1 complex assembly that advances our understanding of its function and will direct future experiments.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , División Celular , Segregación Cromosómica , Cromosomas/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA