Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cerebellum ; 23(2): 401-417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36943575

RESUMEN

Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.


Asunto(s)
Disfunción Cognitiva , Oxigenoterapia Hiperbárica , Péptidos , Ataxias Espinocerebelosas , Ratones , Masculino , Femenino , Animales , Oxigenoterapia Hiperbárica/métodos , Enfermedades Neuroinflamatorias , Disfunción Cognitiva/terapia , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/tratamiento farmacológico
2.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440839

RESUMEN

Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in addition to its roles in neuron development. In this study, we investigated whether SMN can improve the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger (PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of homing and complete performance in differentiating progeny was shown in SMN overexpressed SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells (hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs) differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia treatment.


Asunto(s)
Diferenciación Celular , Células Germinativas/citología , Células Germinativas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Azoospermia/etiología , Azoospermia/metabolismo , Autorrenovación de las Células , Supervivencia Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Masculino , Ratones , Neuronas Motoras/metabolismo , Espermatogonias/citología , Espermatogonias/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
3.
Cerebellum ; 19(4): 487-500, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32270465

RESUMEN

Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disease. We have generated SCA17 transgenic mice bearing human TBP with 109 CAG repeats under the Purkinje cell-specific L7/pcp2 promoter. These mice recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Magnetic resonance imaging (MRI) and immunostainings were performed to identify the neuroimaging spectrum during disease progression. The results indicate that despite an overall normal appearance at birth, postnatal brain damage takes place rapidly in SCA17. Cerebellar atrophy, fourth-ventricle enlargement, and reduced cerebellar N-acetylaspartate levels were detected at the presymptomatic stage, when the mice were juvenile. The aberrations, which included reductions in body weight; cerebral size; striatal size; and the mean, radial, and axial diffusivities of the cerebellum, became more salient as the disease progressed to the old, late-symptomatic stage. Phosphorylated H2A histone family, member X (γH2AX) immunostaining revealed that the cerebellum underwent severe cell senescence in the old stage while the striatum appeared relatively unaffected by aging. Morphometric analysis indicated that the cerebellar atrophy occurred in all subregions with aging. The data establish that the SCA17 mouse brain appears normal at birth but becomes aberrant at the presymptomatic/juvenile stage. More widespread deficits add to the pathological spectrum at the old stage. The study provides information for the expression and expansion of L7/pcp2 promoter and implies the disease progression of SCA17 patients.


Asunto(s)
Encéfalo/patología , Ataxias Espinocerebelosas/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Transgénicos , Neuroimagen/métodos
4.
Brain Behav Immun ; 90: 26-46, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32739365

RESUMEN

Evidence suggests that the Parkinson's disease (PD) pathogenesis is strongly associated with bidirectional pathways in the microbiota-gut-brain axis (MGBA), and psychobiotics may inhibit PD progression. We previously reported that the novel psychobiotic strain, Lactobacillus plantarum PS128 (PS128), ameliorated abnormal behaviors and modulated neurotransmissions in dopaminergic pathways in rodent models. Here, we report that orally administering PS128 for 4 weeks significantly alleviated the motor deficits, elevation in corticosterone, nigrostriatal dopaminergic neuronal death, and striatal dopamine reduction in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. PS128 ingestion suppressed glial cell hyperactivation and increased norepinephrine and neurotrophic factors in the striatum of the PD-model mice. PS128 administration also attenuated MPTP-induced oxidative stress and neuroinflammation in the nigrostriatal pathway. Fecal analysis showed that PS128 modulated the gut microbiota. L. plantarum abundance was significantly increased along with methionine biosynthesis-related microbial modules. PS128 also suppressed the increased family Enterobacteriaceae and lipopolysaccharide and peptidoglycan biosynthesis-related microbial modules caused by MPTP. In conclude, PS128 ingestion alleviated MPTP-induced motor deficits and neurotoxicity.PS128 supplementation inhibited neurodegenerative processes in PD-model mice and may help prevent PD.


Asunto(s)
Lactobacillus plantarum , Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/tratamiento farmacológico , Pirrolidinas
5.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991812

RESUMEN

The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.


Asunto(s)
Diferenciación Celular , Espermatogénesis , Espermatogonias/citología , Espermatogonias/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Autorrenovación de las Células/genética , Supervivencia Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Transducción de Señal , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Testículo/citología , Testículo/metabolismo
6.
Kidney Int ; 91(2): 412-422, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28341240

RESUMEN

Neutrophil gelatinase-associated lipocalin (Ngal) is a biomarker for acute and chronic renal injuries, including polycystic kidney disease (PKD). However, the effect of Ngal on PKD progression remains unexplored. To study this, we generated 3 strains of mice with different expression levels of Ngal within an established PKD model (Pkd1L3/L3): Pkd1L3/L3 (with endogenous Ngal), Pkd1L3/L3; NgalTg/Tg (with endogenous and overexpression of exogenous kidney-specific Ngal) and Pkd1L3/L3; Ngal-/- mice (with Ngal deficiency). Knockout of endogenous Ngal had no effect on phenotypes, cystic progression, or survival of the PKD mice. However, the transgenic mice had a significantly longer lifespan, smaller (but not fewer) renal cysts, and less interstitial fibrosis than the mice without or with endogenous Ngal. Western-blot analyses showed significant increases in Ngal and cleaved caspase-3 and decreases in α-smooth muscle actin, hypoxia-inducible factor 1-α, pro-caspase 3, proliferating cell nuclear antigen, Akt, mammalian target of rapamycin, and S6 Kinase in the transgenic mice as compared with the other 2 strains of PKD mice. Thus, overexpression of exogenous kidney-specific Ngal reduced cystic progression and prolonged the lifespan in PKD mice, was associated with reductions in interstitial fibrosis and proliferation, and augmented apoptosis.


Asunto(s)
Riñón/metabolismo , Lipocalina 2/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Actinas/metabolismo , Animales , Apoptosis , Cadherinas/genética , Caspasa 3/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Receptores ErbB/metabolismo , Femenino , Fibrosis , Predisposición Genética a la Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/patología , Lipocalina 2/genética , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Fosforilación , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Regiones Promotoras Genéticas , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Factores de Tiempo
7.
Hum Mol Genet ; 23(25): 6878-93, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25104854

RESUMEN

Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant cerebellar ataxia caused by the expansion of polyglutamine (polyQ) within the TATA box-binding protein (TBP). Previous studies have shown that polyQ-expanded TBP forms neurotoxic aggregates and alters downstream genes. However, how expanded polyQ tracts affect the function of TBP and the link between dysfunctional TBP and SCA17 is not clearly understood. In this study, we generated novel Drosophila models for SCA17 that recapitulate pathological features such as aggregate formation, mobility defects and premature death. In addition to forming neurotoxic aggregates, we determined that polyQ-expanded TBP reduces its own intrinsic DNA-binding and transcription abilities. Dysfunctional TBP also disrupts normal TBP function. Furthermore, heterozygous dTbp amorph mutant flies exhibited SCA17-like phenotypes and flies expressing polyQ-expanded TBP exhibited enhanced retinal degeneration, suggesting that loss of TBP function may contribute to SCA17 pathogenesis. We further determined that the downregulation of TBP activity enhances retinal degeneration in SCA3 and Huntington's disease fly models, indicating that the deactivation of TBP is likely to play a common role in polyQ-induced neurodegeneration.


Asunto(s)
Drosophila melanogaster/genética , Enfermedad de Huntington/genética , Enfermedad de Machado-Joseph/genética , Degeneración Retiniana/genética , Ataxias Espinocerebelosas/genética , Proteína de Unión a TATA-Box/genética , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Heterocigoto , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Longevidad/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Péptidos/química , Fenotipo , Agregado de Proteínas , Unión Proteica , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Transducción de Señal , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo
8.
Neurochem Res ; 40(4): 800-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25672822

RESUMEN

Spinocerebellar ataxia type 17 (SCA17) is caused by CAG/CAA repeat expansion on the gene encoding a general transcription factor, TATA-box-binding protein (TBP). The CAG repeat expansion leads to the reduced solubility of polyglutamine TBP and induces aggregate formation. The TBP aggregation, mostly present in the cell nuclei, is distinct from that in most other neurodegenerative diseases, in which the aggregation is formed in cytosol or extracellular compartments. Trehalose is a disaccharide issued by the Food and Drug Administration with a Generally Recognized As Safe status. Lines of evidence suggest trehalose could prevent protein aggregate formation in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. In this study, we evaluated the therapeutic potential of trehalose on SCA17 using cerebellar primary and organotypic culture systems and a mouse model. Our results showed that TBP nuclear aggregation was significantly decreased in both the primary and slice cultures. Trehalose (4 %) was further supplied in the drinking water of SCA17 transgenic mice. We found both the gait behavior in the footprint analysis and motor coordination in the rotarod task were significantly improved in the trehalose-treated SCA17 mice. The cerebellar weight was increased and the astrocyte gliosis was reduced in SCA17 mice after trehalose treatment. These data suggest that trehalose could be a potential nontoxic treatment for SCA17.


Asunto(s)
Ataxia de la Marcha/prevención & control , Gliosis/prevención & control , Ataxias Espinocerebelosas/fisiopatología , Trehalosa/farmacología , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Células de Purkinje/efectos de los fármacos
9.
BMC Med ; 11: 38, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23409868

RESUMEN

BACKGROUND: Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model. METHODS: Sodium vanadate (200 µM), L-ascorbic acid (400 µM), or sodium vanadate combined with L-ascorbic acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies, and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and Student's t test for paired variables were used to measure significant differences (P < 0.05) between values. RESULTS: Combined treatment protected cells against vanadate-induced cell death with decreasing B cell lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially decreased vanadium accumulation in these organs. CONCLUSIONS: Combined treatment beginning at birth and continuing for 1 month conferred protection against neuromuscular damage in mice with milder types of SMA. Further, these mice exhibited enhanced motor performance in adulthood. Therefore, combined treatment could present a feasible treatment option for patients with late-onset SMA.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Destreza Motora/efectos de los fármacos , Debilidad Muscular/tratamiento farmacológico , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular/tratamiento farmacológico , Vanadatos/administración & dosificación , Adulto , Animales , Células Cultivadas , Progresión de la Enfermedad , Quimioterapia Combinada , Estudios de Factibilidad , Femenino , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Destreza Motora/fisiología , Debilidad Muscular/patología , Atrofia Muscular/patología , Atrofia Muscular Espinal/patología
10.
Biomol Ther (Seoul) ; 31(3): 285-297, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646447

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid ß (Aß), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7 ,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases. To expand the capacity of flavones as TRKB agonists, two natural flavones quercetin and apigenin, were evaluated. With tryptophan fluorescence quenching assay, we illustrated the direct interaction between quercetin/apigenin and TRKB extracellular domain. Employing Aß folding reporter SH-SY5Y cells, we showed that quercetin and apigenin reduced Aß-aggregation, oxidative stress, caspase-1 and acetylcholinesterase activities, as well as improved the neurite outgrowth. Treatments with quercetin and apigenin increased TRKB Tyr516 and Tyr817 and downstream cAMP-response-element binding protein (CREB) Ser133 to activate transcription of BDNF and BCL2 apoptosis regulator (BCL2), as well as reduced the expression of pro-apoptotic BCL2 associated X protein (BAX). Knockdown of TRKB counteracted the improvement of neurite outgrowth by quercetin and apigenin. Our results demonstrate that quercetin and apigenin are to work likely as a direct agonist on TRKB for their neuroprotective action, strengthening the therapeutic potential of quercetin and apigenin in treating AD.

11.
Biomol Ther (Seoul) ; 31(1): 127-138, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35790892

RESUMEN

Glycogen synthase kinase-3ß (GSK-3ß) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3ß from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3ß activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3ß Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3ß kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

12.
J Biol Chem ; 286(24): 21742-54, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21471219

RESUMEN

Spinal cerebellar ataxia type 12 (SCA12) has been attributed to the elevated expression of ppp2r2b. To better elucidate the pathomechanism of the neuronal disorder and to search for a pharmacological treatment, Drosophila models of SCA12 were generated by overexpression of a human ppp2r2b and its Drosophila homolog tws. Ectopic expression of ppp2r2b or tws caused various pathological features, including neurodegeneration, apoptosis, and shortened life span. More detailed analysis revealed that elevated ppp2r2b and tws induced fission of mitochondria accompanied by increases in cytosolic reactive oxygen species (ROS), cytochrome c, and caspase 3 activity. Transmission electron microscopy revealed that fragmented mitochondria with disrupted cristae were engulfed by autophagosomes in photoreceptor neurons of flies overexpressing tws. Additionally, transgenic flies were more susceptible to oxidative injury induced by paraquat. By contrast, ectopic Drosophila Sod2 expression and antioxidant treatment reduced ROS and caspase 3 activity and extended the life span of the SCA12 fly model. In summary, our study demonstrates that oxidative stress induced by mitochondrial dysfunction plays a causal role in SCA12, and reduction of ROS is a potential therapeutic intervention for this neuropathy.


Asunto(s)
Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Proteína Fosfatasa 2/metabolismo , Ataxias Espinocerebelosas/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia , Caspasa 3/metabolismo , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo , ARN Bicatenario/metabolismo , Especies Reactivas de Oxígeno
13.
Hum Mol Genet ; 19(9): 1766-78, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20176735

RESUMEN

Spinal muscular atrophy (SMA), a motor neuron degeneration disorder, is caused by either mutations or deletions of survival motor neuron 1 (SMN1) gene which result in insufficient SMN protein. Here, we describe a potential link between stathmin and microtubule defects in SMA. Stathmin was identified by screening Smn-knockdown NSC34 cells through proteomics analysis. We found that stathmin was aberrantly upregulated in vitro and in vivo, leading to a decreased level of polymerized tubulin, which was correlated with disease severity. Reduced microtubule densities and beta(III)-tubulin levels in distal axons of affected SMA-like mice and an impaired microtubule network in Smn-deficient cells were observed, suggesting an involvement of stathmin in those microtubule defects. Furthermore, knockdown of stathmin restored the microtubule network defects of Smn-deficient cells, promoted axon outgrowth and reduced the defect in mitochondria transport in SMA-like motor neurons. We conclude that aberrant stathmin levels may play a detrimental role in SMA; this finding suggests a novel approach to treating SMA by enhancing microtubule stability.


Asunto(s)
Microtúbulos/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Estatmina/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Axones/metabolismo , Axones/patología , Western Blotting , Línea Celular , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Ratones , Microscopía Electrónica , Microtúbulos/patología , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Oligonucleótidos/genética , Plásmidos/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-22693529

RESUMEN

Lung cancer has long been one of the most deadly forms of cancer. The majority of lung cancers are of the non-small-cell lung cancer (NSCLC) type. Here we used the non-small-cell lung carcinoma cell line A549 to screen 15 different traditional Chinese herbal medicine (CHM) formulae to explore the possible mechanisms of alternative medicine in lung cancer therapy. We identified three formulae (Formulae 3, 5, and 14) that substantially decreased the survival of A549 cells but did not affect MRC5 normal lung tissue cells. Formula 14, Yang-Dan-Tang, a modified decoction of Ramulus Cinnamomi Cassiae, was chosen for further characterization. Flow cytometry analysis showed that treatment of Formula 14 induced cell cycle arrest in G1 and G2 phase without causing significant cell death. These results were also confirmed by Western blot analysis, with decreased expression of G1/S and G2/M promoting cell cycle machinery including cyclin D3, cyclin B1, CDK4, and CDK6. This study provides further insight into the possible working mechanism of Yang-Dan-Tang in patients.

15.
Stem Cells Dev ; 31(21-22): 696-705, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35848514

RESUMEN

Survival motor neuron (SMN) plays important roles in snRNP assembly and mRNA splicing. Deficiency of SMN causes spinal muscular atrophy (SMA), a leading genetic disease causing childhood mortality. Previous studies have shown that SMN regulates stem cell self-renewal and pluripotency in Drosophila and mouse and is abundantly expressed in mouse embryonic stem cells. However, whether SMN is required for establishment of pluripotency is unclear. In this study, we show that SMN is gradually upregulated in preimplantation mouse embryos and cultured cells undergoing cell reprogramming. Ectopic expression of SMN increased cell reprogramming efficiency, whereas knockdown of SMN impeded induced pluripotent stem cell (iPSC) colony formation. iPSCs could be derived from SMA model mice, but impairment in differentiation capacity may be present. The ectopic overexpression of SMN in iPSCs can upregulate the expression levels of some pluripotent genes and restore the neuronal differentiation capacity of SMA-iPSCs. Taken together, our findings not only demonstrate the functional relevance of SMN in establishment of cell pluripotency but also propose its potential application in facilitating iPSC derivation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Animales , Ratones , Reprogramación Celular/genética , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Expresión Génica
16.
Cells ; 11(3)2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35159293

RESUMEN

Polycystic kidney disease (PKD) is one of the most common inherited diseases and is characterized by the development of fluid-filled cysts along multiple segments of the nephron. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of PKD, which is caused by mutations in either PKD1 or PKD2 genes that encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. As ADPKD progresses, cysts enlarge and disrupt normal kidney architecture, eventually leading to kidney failure. Our previous study showed that overexpression of exogenous kidney-specific neutrophil gelatinase-associated lipocalin (NGAL) reduced cyst progression and prolonged the lifespan of ADPKD mice (Pkd1L3/L3, 2L3 for short). In this study, we attempted to explore the underlying mechanism of reduced cyst progression in the presence of NGAL using immortalized 2L3 cells. The results of MTT and BrdU incorporation assays showed that recombinant mouse NGAL (mNGAL) protein significantly decreased the viability and proliferation of 2L3 cells. Flow cytometry and western blot analyses showed that mNGAL inhibited activation of the ERK and AKT pathways and induced apoptosis and autophagy in 2L3 cells. In addition, a 3D cell culture platform was established to identify cyst progression in 2L3 cells and showed that mNGAL significantly inhibited cyst enlargement in 2L3 cells. Overexpression of secreted mNGAL (pN + LS) and nonsecreted mNGAL (pN - LS) repressed cell proliferation and cyst enlargement in 2L3 cells and had effects on markers involved in proliferation, apoptosis, and autophagy. However, secreted mNGAL had a more pronounced and consistent effect than that of nonsecreted form. These results reveal that secreted mNGAL has stronger ability to inhibit cyst enlargement of ADPKD cells than that of nonsecreted form. These findings could help to identify strategies for the future clinical treatment of ADPKD.


Asunto(s)
Quistes , Lipocalina 2 , Riñón Poliquístico Autosómico Dominante , Animales , Lipocalina 2/genética , Ratones , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética
17.
Aging (Albany NY) ; 14(18): 7568-7586, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36170028

RESUMEN

Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer's disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aß toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aß-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aß-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood-brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aß cells, which may shed light on the potential application in therapeutics of AD.


Asunto(s)
Enfermedad de Alzheimer , Glicoproteínas de Membrana/agonistas , Neuroblastoma , Fármacos Neuroprotectores , Receptor trkB/agonistas , Péptidos beta-Amiloides/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cumarinas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Membranas Artificiales , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Wortmanina
18.
J Neurochem ; 118(2): 288-303, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21554323

RESUMEN

Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant inherited disorder characterized by degeneration of spinocerebellar tracts and selected brainstem neurons owing to the expansion of a CAG repeat of the human TATA-binding protein (hTBP) gene. To gain insight into the pathogenesis of this hTBP mutation, we generated transgenic mice with the mutant hTBP gene driven by the Purkinje specific protein (Pcp2/L7) gene promoter. Mice with the expanded hTBP allele developed ataxia within 2-5 months. Behavioral analysis of L7-hTBP transgenic mice showed reduced fall latency in a rotarod assay. Purkinje cell degeneration was identified by immunostaining of calbindin and IP3R1. Reactive gliosis and neuroinflammation occurred in the transgenic cerebellum, accompanied by up-regulation of GFAP and Iba1. The L7-hTBP transgenic mice were thus confirmed to recapitulate the SCA17 phenotype and were used as a disease model to explore the potential of granulocyte-colony stimulating factor in SCA17 treatment. Our results suggest that granulocyte-colony stimulating factor has a neuroprotective effect in these transgenic mice, ameliorating their neurological and behavioral deficits. These data indicate that the expression of the mutant hTBP in Purkinje cells is sufficient to produce cell degeneration and an ataxia phenotype, and constitutes a good model for better analysis of the neurodegeneration in SCA17.


Asunto(s)
Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Ataxias Espinocerebelosas/genética , Proteína de Unión a TATA-Box/genética , Animales , Femenino , Humanos , Ratones , Ratones Transgénicos , Fenotipo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/prevención & control , Proteína de Unión a TATA-Box/uso terapéutico
19.
J Pathol ; 222(3): 238-48, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20814903

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common life-threatening inherited diseases, and the PKD1 gene is responsible for most cases of this disease. Previous efforts to establish a mouse model that recapitulates the phenotypic characteristics of ADPKD, which have used conventional or conditional knockout of the mouse orthologue Pkd1, have been unsuccessful or unreliable. In a previous study, we described the generation of a novel Pkd1 hypomorphic allele, in which Pkd1 expression was significantly reduced but not totally blocked. These Pkd1 homozygous mutant mice rapidly developed renal cystic disease, supporting the hypothesis that 'haploinsufficiency' explains development of the ADPKD phenotype. In the present study, we further investigated the Pkd1 haploinsufficiency effect by generating Pkd1 knockdown transgenic mice with co-cistronic expression of two miRNA hairpins specific to Pkd1 transcript and an Emerald GFP reporter driven by a human ubiquitin B promoter. Two transgenic lines which had ∼60-70% reduction of Pkd1 expression developed severe renal cystic disease at a rate similar to that of human ADPKD. These results further support the haploinsufficiency hypothesis, and suggest that the onset and progression of the renal cystic diseases are correlated with the level of Pkd1 expression. The two novel mutant lines of mice appear to be ideal models for the study of ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales/patología , Técnicas de Silenciamiento del Gen/métodos , Túbulos Renales/patología , Ratones , Ratones Transgénicos , MicroARNs/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/metabolismo
20.
Dev Dyn ; 239(3): 927-40, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20063414

RESUMEN

We identified and cloned a mouse double homeobox gene (Duxbl), which encodes two homeodomains. Duxbl gene, a tandem triplicate produces two major transcripts, Duxbl and Duxbl-s. The amino acid sequences of Duxbl homeodomains are most similar to those of human DUX4 protein, associated with facioscapulohumeral muscular dystrophy. In adult tissues, Duxbl is predominantly expressed in female reproductive organs and eyes, and slightly expressed in brain and testes. During gonad development, Duxbl is expressed from embryonic to adult stages and specifically expressed in oocytes and spermatogonia. During embryonic development, Duxbl is transcribed in limbs and tail. However, Duxbl proteins were only detected in trunk and limb muscles and in elongated myocytes and myotubes. In C2C12 muscle cell line, Duxbl expression pattern is similar to differentiated marker gene, Myogenin, increased in expression from 2 days onward in differentiating medium. We suggest that Duxbl proteins play regulatory roles during myogenesis and reproductive developments.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Diferenciación Celular , Biología Evolutiva/métodos , Extremidades/embriología , Femenino , Masculino , Ratones , Datos de Secuencia Molecular , Distrofias Musculares/genética , Oocitos/citología , Homología de Secuencia de Aminoácido , Testículo/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA