Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Oral Health ; 23(1): 643, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670290

RESUMEN

OBJECTIVE: Intra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantology, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using deep learning. MATERIAL AND METHODS: As a reference, 1750 OS were manually segmented and labeled. A deep-learning approach based on PointCNN and 3D U-net in combination with a rule-based heuristic algorithm and a combinatorial search algorithm was trained and validated on 1400 OS. Subsequently, the trained algorithm was applied to a test set consisting of 350 OS. The intersection over union (IoU), as a measure of accuracy, was calculated to quantify the degree of similarity between the annotated ground truth and the model predictions. RESULTS: The model achieved accurate teeth segmentations with a mean IoU score of 0.915. The FDI labels of the teeth were predicted with a mean accuracy of 0.894. The optical inspection showed excellent position agreements between the automatically and manually segmented teeth components. Minor flaws were mostly seen at the edges. CONCLUSION: The proposed method forms a promising foundation for time-effective and observer-independent teeth segmentation and labeling on intra-oral scans. CLINICAL SIGNIFICANCE: Deep learning may assist clinicians in virtual treatment planning in orthodontics, prosthetics, implantology, and orthognathic surgery. The impact of using such models in clinical practice should be explored.


Asunto(s)
Aprendizaje Profundo , Humanos , Algoritmos , Sulfato de Calcio , Atención Odontológica , Examen Físico
2.
J Dent ; 133: 104519, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061117

RESUMEN

OBJECTIVE: The aim of this study is to automatically assess the positional relationship between lower third molars (M3i) and the mandibular canal (MC) based on the panoramic radiograph(s) (PR(s)). MATERIAL AND METHODS: A total of 1444 M3s were manually annotated and labeled on 863 PRs as a reference. A deep-learning approach, based on MobileNet-V2 combination with a skeletonization algorithm and a signed distance method, was trained and validated on 733 PRs with 1227 M3s to classify the positional relationship between M3i and MC into three categories. Subsequently, the trained algorithm was applied to a test set consisting of 130 PRs (217 M3s). Accuracy, precision, sensitivity, specificity, negative predictive value, and F1-score were calculated. RESULTS: The proposed method achieved a weighted accuracy of 0.951, precision of 0.943, sensitivity of 0.941, specificity of 0.800, negative predictive value of 0.865 and an F1-score of 0.938. CONCLUSION: AI-enhanced assessment of PRs can objectively, accurately, and reproducibly determine the positional relationship between M3i and MC. CLINICAL SIGNIFICANCE: The use of such an explainable AI system can assist clinicians in the intuitive positional assessment of lower third molars and mandibular canals. Further research is required to automatically assess the risk of alveolar nerve injury on panoramic radiographs.


Asunto(s)
Canal Mandibular , Tercer Molar , Tercer Molar/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico , Inteligencia Artificial , Radiografía Panorámica , Aprendizaje Profundo , Nervio Mandibular/diagnóstico por imagen , Canal Mandibular/diagnóstico por imagen
3.
Diagnostics (Basel) ; 12(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36010318

RESUMEN

The detection and classification of cystic lesions of the jaw is of high clinical relevance and represents a topic of interest in medical artificial intelligence research. The human clinical diagnostic reasoning process uses contextual information, including the spatial relation of the detected lesion to other anatomical structures, to establish a preliminary classification. Here, we aimed to emulate clinical diagnostic reasoning step by step by using a combined object detection and image segmentation approach on panoramic radiographs (OPGs). We used a multicenter training dataset of 855 OPGs (all positives) and an evaluation set of 384 OPGs (240 negatives). We further compared our models to an international human control group of ten dental professionals from seven countries. The object detection model achieved an average precision of 0.42 (intersection over union (IoU): 0.50, maximal detections: 100) and an average recall of 0.394 (IoU: 0.50-0.95, maximal detections: 100). The classification model achieved a sensitivity of 0.84 for odontogenic cysts and 0.56 for non-odontogenic cysts as well as a specificity of 0.59 for odontogenic cysts and 0.84 for non-odontogenic cysts (IoU: 0.30). The human control group achieved a sensitivity of 0.70 for odontogenic cysts, 0.44 for non-odontogenic cysts, and 0.56 for OPGs without cysts as well as a specificity of 0.62 for odontogenic cysts, 0.95 for non-odontogenic cysts, and 0.76 for OPGs without cysts. Taken together, our results show that a combined object detection and image segmentation approach is feasible in emulating the human clinical diagnostic reasoning process in classifying cystic lesions of the jaw.

4.
Eur J Radiol ; 142: 109834, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34252866

RESUMEN

BACKGROUND: Body composition is associated with mortality; however its routine assessment is too time-consuming. PURPOSE: To demonstrate the value of artificial intelligence (AI) to extract body composition measures from routine studies, we aimed to develop a fully automated AI approach to measure fat and muscles masses, to validate its clinical discriminatory value, and to provide the code, training data and workflow solutions to facilitate its integration into local practice. METHODS: We developed a neural network that quantified the tissue components at the L3 vertebral body level using data from the Liver Tumor Challenge (LiTS) and a pancreatic cancer cohort. We classified sarcopenia using accepted skeletal muscle index cut-offs and visceral fat based its median value. We used Kaplan Meier curves and Cox regression analysis to assess the association between these measures and mortality. RESULTS: Applying the algorithm trained on LiTS data to the local cohort yielded good agreement [>0.8 intraclass correlation (ICC)]; when trained on both datasets, it had excellent agreement (>0.9 ICC). The pancreatic cancer cohort had 136 patients (mean age: 67 ± 11 years; 54% women); 15% had sarcopenia; mean visceral fat was 142 cm2. Concurrent with prior research, we found a significant association between sarcopenia and mortality [mean survival of 15 ± 12 vs. 22 ± 12 (p < 0.05), adjusted HR of 1.58 (95% CI: 1.03-3.33)] but no association between visceral fat and mortality. The detector analysis took 1 ± 0.5 s. CONCLUSIONS: AI body composition analysis can provide meaningful imaging biomarkers from routine exams demonstrating AI's ability to further enhance the clinical value of radiology reports.


Asunto(s)
Neoplasias Pancreáticas , Sarcopenia , Anciano , Inteligencia Artificial , Composición Corporal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Sarcopenia/patología , Tomografía Computarizada por Rayos X
5.
Open Forum Infect Dis ; 8(7): ofab275, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34258315

RESUMEN

BACKGROUND: Obesity has been linked to severe clinical outcomes among people who are hospitalized with coronavirus disease 2019 (COVID-19). We tested the hypothesis that visceral adipose tissue (VAT) is associated with severe outcomes in patients hospitalized with COVID-19, independent of body mass index (BMI). METHODS: We analyzed data from the Massachusetts General Hospital COVID-19 Data Registry, which included patients admitted with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 infection from March 11 to May 4, 2020. We used a validated, fully automated artificial intelligence (AI) algorithm to quantify VAT from computed tomography (CT) scans during or before the hospital admission. VAT quantification took an average of 2 ± 0.5 seconds per patient. We dichotomized VAT as high and low at a threshold of ≥100 cm2 and used Kaplan-Meier curves and Cox proportional hazards regression to assess the relationship between VAT and death or intubation over 28 days, adjusting for age, sex, race, BMI, and diabetes status. RESULTS: A total of 378 participants had CT imaging. Kaplan-Meier curves showed that participants with high VAT had a greater risk of the outcome compared with those with low VAT (P < .005), especially in those with BMI <30 kg/m2 (P < .005). In multivariable models, the adjusted hazard ratio (aHR) for high vs low VAT was unchanged (aHR, 1.97; 95% CI, 1.24-3.09), whereas BMI was no longer significant (aHR for obese vs normal BMI, 1.14; 95% CI, 0.71-1.82). CONCLUSIONS: High VAT is associated with a greater risk of severe disease or death in COVID-19 and can offer more precise information to risk-stratify individuals beyond BMI. AI offers a promising approach to routinely ascertain VAT and improve clinical risk prediction in COVID-19.

6.
Artículo en Inglés | MEDLINE | ID: mdl-31056497

RESUMEN

Heterogeneous domain adaptation (HDA) addresses the task of associating data not only across dissimilar domains but also described by different types of features. Inspired by the recent advances of neural networks and deep learning, we propose a deep leaning model of Transfer Neural Trees (TNT), which jointly solves cross-domain feature mapping, adaptation, and classification in a unified architecture. As the prediction layer in TNT, we introduce Transfer Neural Decision Forest (Transfer- NDF), which is able to learn the neurons in TNT for adaptation by stochastic pruning. In order to handle semi-supervised HDA, a unique embedding loss term is introduced to TNT for preserving prediction and structural consistency between labeled and unlabeled target-domain data. We further show that our TNT can be extended to zero shot learning for associating image and attribute data with promising performance. Finally, experiments on different classification tasks across features, datasets, and modalities would verify the effectiveness of our TNT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA