Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 624(7992): 630-638, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38093012

RESUMEN

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Asunto(s)
Vacunas contra la COVID-19 , Inmunidad Mucosa , Animales , Cricetinae , Humanos , Ratones , Administración por Inhalación , Aerosoles , Anticuerpos Antivirales/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos Virales/inmunología , Toxina del Cólera , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Nanopartículas , Polvos , Primates/virología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunación , Cápsulas
2.
Small ; 20(35): e2400142, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38676334

RESUMEN

Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.


Asunto(s)
Biomimética , ADN Polimerasa Dirigida por ADN , ADN , ADN/química , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Biomimética/métodos , Simulación de Dinámica Molecular , Técnicas Biosensibles/métodos , Nanotecnología/métodos
3.
J Synchrotron Radiat ; 31(Pt 3): 432-437, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587895

RESUMEN

At-wavelength metrology of X-ray optics plays a crucial role in evaluating the performance of optics under actual beamline operating conditions, enabling in situ diagnostics and optimization. Techniques utilizing a wavefront random modulator have gained increasing attention in recent years. However, accurately mapping the measured wavefront slope to a curved X-ray mirror surface when the modulator is downstream of the mirror has posed a challenge. To address this problem, an iterative method has been developed in this study. The results demonstrate a significant improvement compared with conventional approaches and agree with offline measurements obtained from optical metrology. We believe that the proposed method enhances the accuracy of at-wavelength metrology techniques, and empowers them to play a greater role in beamline operation and optics fabrication.

4.
J Synchrotron Radiat ; 31(Pt 5): 1037-1042, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078691

RESUMEN

In situ wavefront sensing plays a critical role in the delivery of high-quality beams for X-ray experiments. X-ray speckle-based techniques stand out among other in situ techniques for their easy experimental setup and various data acquisition modes. Although X-ray speckle-based techniques have been under development for more than a decade, there are still no user-friendly software packages for new researchers to begin with. Here, we present an open-source Python package, spexwavepy, for X-ray wavefront sensing using speckle-based techniques. This Python package covers a variety of X-ray speckle-based techniques, provides plenty of examples with real experimental data and offers detailed online documentation for users. We hope it can help new researchers learn and apply the speckle-based techniques for X-ray wavefront sensing to synchrotron radiation and X-ray free-electron laser beamlines.

5.
Microb Pathog ; : 106882, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197692

RESUMEN

Cyclic di-GMP (c-di-GMP), a ubiquitous secondary messenger in bacteria, affects multiple bacterial behaviors including motility and biofilm formation. c-di-GMP is synthesized by diguanylate cyclase harboring a GGDEF domain and degraded by phosphodiesterase harboring an either EAL or HD-GYP domain. Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, harbors more than 60 genes involved in c-di-GMP metabolism. However, roles of most of these genes including vpa0198, which encodes a GGDEF-domain containing protein, are still completely unknown. AphA and OpaR are the master quorum sensing (QS) regulators operating at low (LCD) and high cell density (HCD), respectively. QsvR integrates into QS to control gene expression via direct regulation of AphA and OpaR. In this study, we showed that deletion of vpa0198 remarkably reduced c-di-GMP production and biofilm formation, whereas promoted the swimming motility of V. parahaemolyticus. Overexpression of VPA0198 in the vpa0198 mutant strain significantly reduced the swimming and swarming motility and enhanced the biofilm formation ability of V. parahaemolyticus. In addition, transcription of vpa0198 was under the collective regulation of AphA, OpaR and QsvR. AphA activated the transcription of vpa0198 at LCD, whereas QsvR and OpaR coordinately and directly repressed vpa0198 transcription at HCD, thereby leading to a cell density-dependent expression of vpa0198. Therefore, this work expanded the knowledge of synthetic regulatory mechanism of c-di-GMP in V. parahaemolyticus.

6.
PLoS Biol ; 19(2): e3001114, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600420

RESUMEN

Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.


Asunto(s)
Benzoxazinas/metabolismo , Escarabajos/fisiología , Azúcares/metabolismo , Zea mays/metabolismo , Animales , Conducta Apetitiva/fisiología , Escarabajos/crecimiento & desarrollo , Herbivoria , Larva/crecimiento & desarrollo , Larva/fisiología , Metaboloma , Raíces de Plantas/metabolismo , Zea mays/genética
7.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34675080

RESUMEN

Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.


Asunto(s)
Benzoxazinas/metabolismo , Herbivoria , Suelo/química , Spodoptera/crecimiento & desarrollo , Zea mays/metabolismo , Animales , Ecosistema , Homeostasis , Hierro/metabolismo , Larva/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Zea mays/parasitología
8.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34625471

RESUMEN

Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.


Asunto(s)
Inmunidad Innata , Manganeso/metabolismo , Proteínas de la Membrana/metabolismo , Sistemas de Secreción Tipo VI , Animales , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Transporte de Proteínas , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidad
9.
Ecotoxicol Environ Saf ; 278: 116443, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744068

RESUMEN

Heavy-metal contamination in soil has long been a persistent challenge and the utilization of agricultural waste for in-situ stabilization remediation presents a promising approach to tackle this problem. Agricultural wastes exhibit promising potential in the remediation of contaminated land and modification could improve the adsorption performance markedly. Citric acid and Fe3O4 treated sugarcane bagasse adsorbed more heavy metals than raw materials in the aqueous system, employing these materials for heavy metal remediation in soil holds significant implications for broadening the raw material source of passivators and enhancing waste utilization efficiency. In this paper, a 120-day soil incubation study was conducted to compare the effects of pristine sugarcane bagasse (SB), citric-acid modified (SSB1, SSB2 and SSB3 with increasing proportion of citric acid) and citric-acid/Fe3O4 modified (MSB1, MSB4 and MSB7 with increasing proportion of Fe3O4) sugarcane bagasse at 1 % addition rate on cadmium (Cd) and copper (Cu) passivation. The SB, SSB1 and MSB1 did not always decrease the content of CaCl2-extractable Cd while all the seven amendments decreased the CaCl2-extractable Cu during the experiment period. Among all materials, SSB3 and MSB7 exhibited the highest efficiency in reducing the concentrations of CaCl2-extractable Cd and Cu. At Day 120, SB, SSB3 and MSB7 reduced the content of CaCl2-extractable Cd by 8 %, 18 % and 24 %, and of CaCl2-extractable Cu by 25 %, 50 % and 61 %, respectively. The efficiency of Cd and Cu immobilization was associated positively with the pH, functional groups and H-bonds of the amendments. The results suggest that the efficiency of sugarcane bagasse in heavy-metal passivation can be largely enhanced through chemical modifications using high proportions of citric acid and Fe3O4.


Asunto(s)
Cadmio , Celulosa , Cobre , Saccharum , Contaminantes del Suelo , Saccharum/química , Celulosa/química , Cadmio/química , Cadmio/análisis , Cobre/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Adsorción , Restauración y Remediación Ambiental/métodos , Ácido Cítrico/química , Suelo/química , Fraccionamiento Químico , Metales Pesados/química , Metales Pesados/análisis
10.
Angew Chem Int Ed Engl ; 63(1): e202312923, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37971168

RESUMEN

Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.

11.
Angew Chem Int Ed Engl ; 63(28): e202405838, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647574

RESUMEN

Transition-metal-catalyzed [4+4] cycloaddition leading to cyclooctanoids has centered on dimerization between 1,3-diene-type substrates. Herein, we describe a [4σ+4π-1] and [4σ+4π] cycloaddition strategy to access 7/8-membered fused carbocycles through rhodium-catalyzed coupling between the 4σ-donor (benzocyclobutenones) and pendant diene (4π) motifs. The two pathways can be controlled by adjusting the solvated CO concentration. A broad range (>40 examples) of 5-6-7 and 5-6-8 polyfused carbocycles was obtained in good yields (up to 90 %). DFT calculations, kinetic monitoring and 13C-labeling experiments were carried out, suggesting a plausible mechanism. Notably, one 5-6-7 tricycle was found to be a very rare, potent, and selective ligand for the liver X receptor ß (KD=0.64 µM), which is a potential therapeutic target for cholesterol-metabolism-related fatal diseases.

12.
J Am Chem Soc ; 145(39): 21554-21561, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37668596

RESUMEN

Carbon is a primary element to constitute organic molecules, while metal catalysis is a basic tool in organic synthesis. The establishment of a link between the ubiquitous carbon bonding and metal catalysis is thus a fundamentally important problem. However, there is yet no experimental example to introduce the role of carbon bonding in a metal catalysis process. Herein, we merged the topics of carbon bonding and metal catalysis together and demonstrated that a supramolecular carbon-bonding metal complex can not only give rise to catalytic activity but, more remarkably, direct structural-isomer selection events in gold-catalyzed reactions. The experimental results unveil the fact that the imposing of weak carbon-bonding interactions on a gold complex can alter the carbene as well as the Lewis acid property of these catalysts. These results illustrate a non-negligible role of weak carbon-bonding interactions in the modulation of metal catalysis. As such, carbon-bonding metal catalysis is suggested to be used as a routine tool not only in the development of reactions but more frequently in analyzing reaction processes in metal catalysis.

13.
Opt Express ; 31(25): 41000-41013, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087509

RESUMEN

For advanced X-ray sources such as synchrotron radiation facilities and X-ray free electron lasers, a smooth, structure-free beam on the far-field plane is usually strongly desired. The formation of the fine structures in far-field images downstream from imperfect optics must be understood. Although numerous studies have discussed the impacts on focused beams, there are still few quantitative theories for the impacts on beams in the far field. This article is an advance on our previous work, which discussed the uniformity of the intensity distribution in the far field. Here, a new theoretical approach is presented. It not only eases the assumptions needed to relate the fine structures to the wavefront curvature, but it also provides a quantitative estimation of the impacts of optical errors. The theoretical result is also verified by X-ray experiments.

14.
Microb Pathog ; 174: 105947, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521654

RESUMEN

Vibrio parahaemolyticus produces dual flagellar systems, i.e., the sheathed polar flagellum (Pof) and numerous lateral flagella (Laf), both of which are strictly regulated by numerous factors. QsvR is an AraC-type regulator that controls biofilm formation and virulence of V. parahaemolyticus. In the present study, we showed that deletion of qsvR significantly enhanced swimming motility of V. parahaemolyticus, while the swarming motility was not affected by QsvR. QsvR bound to the regulatory DNA regions of flgAMN and flgMN within the Pof gene loci to repress their transcription, whereas it negatively controls the transcription of flgBCDEFGHIJ and flgKL-flaC in an indirect manner. However, over-produced QsvR was also likely to possess the binding activity to the regulatory DNA regions of flgBCDEFGHIJ and flgKL-flaC in a heterologous host. In summary, this work demonstrated that QsvR negatively regulated the swimming motility of V. parahaemolyticus via directly action on the transcription of Pof genes.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Flagelos/genética , Flagelos/metabolismo , Genes Bacterianos , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
15.
J Org Chem ; 88(5): 2750-2757, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36790843

RESUMEN

Factors controlling the regioselectivity in alkene hydrocupration were computationally investigated using energy decomposition analysis. The results demonstrate that the Markovnikov-selective hydrocupration with electronically activated mono-substituted olefins is mostly affected by the destabilizing Pauli repulsion, which is due to the electron delocalization effect. The anti-Markovnikov-selective hydrocupration with 1,1-dialkyl-substituted terminal olefins is dominated by the repulsive electrostatic interactions, which is because of the unequal π electron distribution caused by the induction effect of alkyl substituents.

16.
Inorg Chem ; 62(29): 11372-11380, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37431607

RESUMEN

[n]Cycloparaphenylenes ([n]CPPs, n denotes the number of phenyl groups) are difficult to synthesize because of the strain related to their bent phenyl rings. In particular, the strain in [3]CPP is high enough to destroy the π electron delocalization, leading to the spontaneous structural transition to an energetically more stable "bond-shift" (BS) isomer ([3]BS). In this contribution, we propose to achieve [3]CPP by enhancing the π electron delocalization through hosting a guest metal atom. Our computations revealed that Sc could stabilize [3]CPP by forming the [Sc©[3]CPP]+ complex through the favorable π-Sc donation-backdonation interactions. Thermodynamically, the binding energy between the Sc atom and [3]CPP was -205.7 kcal/mol, which could well compensate not only the energy difference of 44.2 kcal/mol between [3]CPP and [3]BS but also the extremely high strain energy of 170.3 kcal/mol in [3]CPP. Simultaneously, the [Sc©[3]CPP]+ complex is stable up to 1500 K in dynamic simulations, suggesting its high viability in the synthesis.

17.
Curr Microbiol ; 80(12): 371, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838636

RESUMEN

Vibrio parahaemolyticus, the leading cause of bacterial seafood-associated gastroenteritis, can form biofilms. In this work, the gene expression profiles of V. parahaemolyticus during biofilm formation were investigated by transcriptome sequencing. A total of 183, 503, and 729 genes were significantly differentially expressed in the bacterial cells at 12, 24 and 48 h, respectively, compared with that at 6 h. Of these, 92 genes were consistently activated or repressed from 6 to 48 h. The genes involved in polar flagellum, chemotaxis, mannose-sensitive haemagglutinin type IV pili, capsular polysaccharide, type III secretion system 1 (T3SS1), T3SS2, thermostable direct hemolysin (TDH), type VI secretion system 1 (T6SS1) and T6SS2 were downregulated, whereas those involved in V. parahaemolyticus pathogenicity island (Vp-PAI) (except for T3SS2 and TDH) and membrane fusion proteins were upregulated. Three extracellular protease genes (vppC, prtA and VPA1071) and a dozen of outer membrane protein encoding genes were also significantly differentially expressed during biofilm formation. In addition, five putative c-di-GMP metabolism-associated genes were significantly differentially expressed, which may account for the drop in c-di-GMP levels after the beginning of biofilm formation. Moreover, many putative regulatory genes were significantly differentially expressed, and more than 1000 putative small non-coding RNAs were detected, suggesting that biofilm formation was tightly regulated by complex regulatory networks. The data provided a global view of gene expression profiles during biofilm formation, showing that the significantly differentially expressed genes were involved in multiple cellular pathways, including virulence, biofilm formation, metabolism, and regulation.


Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Humanos , Transcriptoma , Vibrio parahaemolyticus/genética , Virulencia/genética , Factores de Virulencia/genética , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vibriosis/microbiología , Regulación Bacteriana de la Expresión Génica
18.
Proc Natl Acad Sci U S A ; 117(22): 12017-12028, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32434917

RESUMEN

Synthetic chemical elicitors, so called plant strengtheners, can protect plants from pests and pathogens. Most plant strengtheners act by modifying defense signaling pathways, and little is known about other mechanisms by which they may increase plant resistance. Moreover, whether plant strengtheners that enhance insect resistance actually enhance crop yields is often unclear. Here, we uncover how a mechanism by which 4-fluorophenoxyacetic acid (4-FPA) protects cereals from piercing-sucking insects and thereby increases rice yield in the field. Four-FPA does not stimulate hormonal signaling, but modulates the production of peroxidases, H2O2, and flavonoids and directly triggers the formation of flavonoid polymers. The increased deposition of phenolic polymers in rice parenchyma cells of 4-FPA-treated plants is associated with a decreased capacity of the white-backed planthopper (WBPH) Sogatella furcifera to reach the plant phloem. We demonstrate that application of 4-PFA in the field enhances rice yield by reducing the abundance of, and damage caused by, insect pests. We demonstrate that 4-FPA also increases the resistance of other major cereals such as wheat and barley to piercing-sucking insect pests. This study unravels a mode of action by which plant strengtheners can suppress herbivores and increase crop yield. We postulate that this represents a conserved defense mechanism of plants against piercing-sucking insect pests, at least in cereals.


Asunto(s)
Acetatos/farmacología , Conducta Alimentaria/efectos de los fármacos , Flavonoides , Hemípteros , Inmunidad de la Planta/efectos de los fármacos , Animales , Bioensayo , Productos Agrícolas/efectos de los fármacos , Flavonoides/análisis , Flavonoides/metabolismo , Herbivoria , Hordeum/efectos de los fármacos , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Oryza/efectos de los fármacos , Peroxidasas/análisis , Peroxidasas/metabolismo , Control de Plagas/métodos , Hojas de la Planta/química , Triticum/efectos de los fármacos
19.
J Synchrotron Radiat ; 29(Pt 6): 1385-1393, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345746

RESUMEN

Speckle-based at-wavelength metrology techniques now play an important role in X-ray wavefront measurements. However, for reflective X-ray optics, the majority of existing speckle-based methods fail to provide reliable 2D information about the optical surface being characterized. Compared with the 1D information typically output from speckled-based methods, a 2D map is more informative for understanding the overall quality of the optic being tested. In this paper, we propose a method for in situ 2D absolute metrology of weakly focusing X-ray mirrors. Importantly, the angular misalignment of the mirror can be easily corrected with the proposed 2D processing procedure. We hope the speckle pattern data processing method presented here will help to extend this technique to wider applications in the synchrotron radiation and X-ray free-electron laser communities.

20.
New Phytol ; 233(2): 618-623, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506634

RESUMEN

The ability to predict future risks is essential for many organisms, including plants. Plants can gather information about potential future herbivory by detecting volatiles that are emitted by herbivore-attacked neighbors. Several individual volatiles have been identified as active danger cues. Recent work has also shown that plants may integrate multiple volatiles into their defense responses. Here, I discuss how the integration of multiple volatiles can increase the capacity of plants to predict future herbivore attack. I propose that integration of multiple volatile cues does not occur at the perception stage, but may through downstream early defense signaling and then be further consolidated by hormonal crosstalk. Exploring plant volatile cue integration can facilitate our understanding and utilization of chemical information transfer.


Asunto(s)
Señales (Psicología) , Compuestos Orgánicos Volátiles , Herbivoria/fisiología , Plantas , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA