Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Mol Life Sci ; 81(1): 130, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472355

RESUMEN

ALKBH1 is a typical demethylase of nucleic acids, which is correlated with multiple types of biological processes and human diseases. Recent studies are focused on the demethylation of ALKBH1, but little is known about its non-demethylase function. Here, we demonstrate that ALKBH1 regulates the glycolysis process through HIF-1α signaling in a demethylase-independent manner. We observed that depletion of ALKBH1 inhibits glycolysis flux and extracellular acidification, which is attributable to reduced HIF-1α protein levels, and it can be rescued by reintroducing HIF-1α. Mechanistically, ALKBH1 knockdown enhances chaperone-mediated autophagy (CMA)-mediated HIF-1α degradation by facilitating the interaction between HIF-1α and LAMP2A. Furthermore, we identify that ALKBH1 competitively binds to the OST48, resulting in compromised structural integrity of oligosaccharyltransferase (OST) complex and subsequent defective N-glycosylation of LAMPs, particularly LAMP2A. Abnormal glycosylation of LAMP2A disrupts lysosomal homeostasis and hinders the efficient degradation of HIF-1α through CMA. Moreover, NGI-1, a small-molecule inhibitor that selectively targets the OST complex, could inhibit the glycosylation of LAMPs caused by ALKBH1 silencing, leading to impaired CMA activity and disruption of lysosomal homeostasis. In conclusion, we have revealed a non-demethylation role of ALKBH1 in regulating N-glycosylation of LAMPs by interacting with OST subunits and CMA-mediated degradation of HIF-1α.


Asunto(s)
Autofagia , Transducción de Señal , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Glicosilación , Glucólisis , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo
2.
FASEB J ; 35(10): e21908, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34478580

RESUMEN

Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2), a mammalian orthologue of drosophila flamingo, belongs to the cadherin subfamily. CELSR2 mainly function in neural development and cilium polarity. Recent studies showed that the CELSR2 gene is related to many human diseases, including coronary artery disease, idiopathic scoliosis, and cancer. Genome-Wide Association Studies data showed that SNP in the CELSR2-PSRC1-SORT1 gene loci has a strong association with circulating lipid levels and coronary artery disease. However, the function and underlying mechanism of CELSR2 in hepatic lipid metabolism remain unknown. Here, we found that CELSR2 expression is decreased in the liver of NAFLD/NASH patients and db/db mice. Depletion of CELSR2 significantly decreased the lipid accumulation in hepatocytes by suppressing the expression of lipid synthesis enzymes. Moreover, CELSR2 deficiency impaired the physiological unfolded protein response (UPR), which damages the ER homeostasis, and elevates the reactive oxygen species (ROS) level by decreasing the antioxidant expression. Scavenging of ROS by N-acetylcysteine treatment could restore the decreased lipid accumulation of CELSR2 knockdown cells. Furthermore, CELSR2 loss impaired cell survival by suppressing cell proliferation and promoting apoptosis. Our results uncovered a new role of CELSR2 in regulating lipid homeostasis and UPR, suggesting CELSR2 may be a new therapeutic target for non-alcoholic fatty liver disease.


Asunto(s)
Cadherinas/deficiencia , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada , Animales , Apoptosis/genética , Cadherinas/genética , Línea Celular , Proliferación Celular/genética , Supervivencia Celular/genética , Hepatocitos/enzimología , Humanos , Lípidos , Masculino , Ratones , Respuesta de Proteína Desplegada/genética
3.
Commun Biol ; 6(1): 606, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277441

RESUMEN

C11orf54 is an ester hydrolase highly conserved across different species. C11orf54 has been identified as a biomarker protein of renal cancers, but its exact function remains poorly understood. Here we demonstrate that C11orf54 knockdown decreases cell proliferation and enhances cisplatin-induced DNA damage and apoptosis. On the one hand, loss of C11orf54 reduces Rad51 expression and nuclear accumulation, which results in suppression of homologous recombination repair. On the other hand, C11orf54 and HIF1A competitively interact with HSC70, knockdown of C11orf54 promotes HSC70 binding to HIF1A to target it for degradation via chaperone-mediated autophagy (CMA). C11orf54 knockdown-mediated HIF1A degradation reduces the transcription of ribonucleotide reductase regulatory subunit M2 (RRM2), which is a rate-limiting RNR enzyme for DNA synthesis and DNA repair by producing dNTPs. Supplement of dNTPs can partially rescue C11orf54 knockdown-mediated DNA damage and cell death. Furthermore, we find that Bafilomycin A1, an inhibitor of both macroautophagy and chaperone-mediated autophagy, shows similar rescue effects as dNTP treatment. In summary, we uncover a role of C11orf54 in regulating DNA damage and repair through CMA-mediated decreasing of HIF1A/RRM2 axis.


Asunto(s)
Autofagia Mediada por Chaperones , Proliferación Celular , Daño del ADN , Reparación del ADN , Replicación del ADN , Humanos
4.
Med Int (Lond) ; 3(2): 11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875818

RESUMEN

WD repeat-containing protein 1 (WDR1) regulates the cofilin 1 (CFL1) activity, promotes cytoskeleton remodeling, and thus, facilitates cell migration and invasion. A previous study reported that autoantibodies against CFL1 and ß-actin were useful biomarkers for diagnosing and predicting the prognosis of patients with esophageal carcinoma. Therefore, the present study aimed to evaluate the serum levels of anti-WDR1 antibodies (s-WDR1-Abs) combined with serum levels of anti-CFL1 antibodies (s-CFL1-Abs) in patients with esophageal carcinoma. Serum samples obtained from 192 patients with esophageal carcinoma and other solid cancers. And s-WDR1-Ab and s-CFL1-Ab titers were analyzed using the amplified luminescent proximity homogeneous assay-linked immunosorbent assay. Compared with those of healthy donors, the s-WDR1-Ab levels were significantly higher in the 192 patients with esophageal, whereas these were not significantly higher in the samples from patients with gastric, colorectal, lung, or breast cancer. In 91 patients treated with surgery, sex, tumor depth, lymph node metastasis, stage and C-reactive protein levels were significantly associated with overall survival, as determined using the log-rank test, whereas the squamous cell carcinoma antigen, p53 antibody and s-WDR1-Ab levels tended to be associated with a worse prognosis. Although no significant difference was observed in the survival between the positive and negative groups of s-WDR1-Abs or s-CFL1-Abs alone in the Kaplan-Meier test, the patients in the s-WDR1-Ab-positive and s-CFL1-Ab-negative groups exhibited a significantly poorer prognosis in the overall survival analysis. On the whole, the present study demonstrates that the combination of positive anti-WDR1 antibodies with negative anti-CFL1 antibodies in serum may be a poor prognostic factor for patients with esophageal carcinoma.

5.
Nat Commun ; 14(1): 6201, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794041

RESUMEN

Endonuclease G (ENDOG), a nuclear-encoded mitochondrial intermembrane space protein, is well known to be translocated into the nucleus during apoptosis. Recent studies have shown that ENDOG might enter the mitochondrial matrix to regulate mitochondrial genome cleavage and replication. However, little is known about the role of ENDOG in the cytosol. Our previous work showed that cytoplasmic ENDOG competitively binds with 14-3-3γ, which released TSC2 to repress mTORC1 signaling and induce autophagy. Here, we demonstrate that cytoplasmic ENDOG could also release Rictor from 14-3-3γ to activate the mTORC2-AKT-ACLY axis, resulting in acetyl-CoA production. Importantly, we observe that ENDOG could translocate to the ER, bind with Bip, and release IRE1a/PERK to activate the endoplasmic reticulum stress response, promoting lipid synthesis. Taken together, we demonstrate that loss of ENDOG suppresses acetyl-CoA production and lipid synthesis, along with reducing endoplasmic reticulum stress, which eventually alleviates high-fat diet-induced nonalcoholic fatty liver disease in female mice.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Femenino , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Citosol/metabolismo , Acetilcoenzima A , Estrés del Retículo Endoplásmico , Lípidos , Apoptosis/genética
6.
Stroke Vasc Neurol ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311641

RESUMEN

BACKGROUND: Atherosclerosis (AS) and tumours are the leading causes of death worldwide and share common risk factors, detection methods and molecular markers. Therefore, searching for serum markers shared by AS and tumours is beneficial to the early diagnosis of patients. METHODS: The sera of 23 patients with AS-related transient ischaemic attack were screened by serological identification of antigens through recombinant cDNA expression cloning (SEREX), and cDNA clones were identified. Pathway function enrichment analysis was performed on cDNA clones to identify their biological pathways and determine whether they were related to AS or tumours. Subsequently, gene-gene and protein-protein interactions were performed and AS-associated markers would be discovered. The expression of AS biomarkers in human normal organs and pan-cancer tumour tissues were explored. Then, immune infiltration level and tumour mutation burden of various immune cells were evaluated. Survival curves analysis could show the expression of AS markers in pan-cancer. RESULTS: AS-related sera were screened by SEREX, and 83 cDNA clones with high homology were obtained. Through functional enrichment analysis, it was found that their functions were closely related to AS and tumour functions. After multiple biological information interaction screening and the external cohort validating, poly(A) binding protein cytoplasmic 1 (PABPC1) was found to be a potential AS biomarker. To assess whether PABPC1 was related to pan-cancer, its expression in different tumour pathological stages and ages was screened. Since AS-associated proteins were closely related to cancer immune infiltration, we investigated and found that PABPC1 had the same role in pan-cancer. Finally, analysis of Kaplan-Meier survival curves revealed that high PABPC1 expression in pan-cancer was associated with high risk of death. CONCLUSIONS: Through the findings of SEREX and bioinformatics pan-cancer analysis, we concluded that PABPC1 might serve as a potential biomarker for the prediction and diagnosis of AS and pan-cancer.

7.
Front Oncol ; 12: 870086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656505

RESUMEN

Atherosclerosis (AS) and cancers are major global causes of mortality and morbidity. They also share common modifiable pathogenesis risk factors. As the same strategies used to predict AS could also detect certain cancers, we sought novel serum antibody biomarkers of cancers in atherosclerotic sera sampled by liquid biopsy. Using serological antigen identification by cDNA expression cloning (SEREX) and western blot, we screened and detected the antigens BRCA1-Associated ATM Activator 1 (BRAT1) and WD Repeat Domain 1 (WDR1) in the sera of patients with transient ischemic attacks (TIA). Amplified luminescence proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) established the upregulation of serum BRAT1 antibody (BRAT1-Abs) and WDR1 antibody (WDR1-Abs) in patients with AS-related diseases compared with healthy subjects. ROC and Spearman's correlation analyses showed that BRAT1-Abs and WDR1-Abs could detect AS-related diseases. Thus, serum BRAT1-Abs and WDR1-Abs are potential AS biomarkers. We used online databases and AlphaLISA detection to compare relative antigen and serum antibody expression and found high BRAT1 and BRAT1-Abs expression in patients with GI cancers. Significant increases (> 0.6) in the AUC for BRAT1-Ab vs. esophageal squamous cell carcinoma (ESCC), gastric cancer, and colorectal cancer suggested that BRAT1-Ab exhibited better predictive potential for GI cancers than WDR1-Ab. There was no significant difference in overall survival (OS) between BRAT1-Ab groups (P = 0.12). Nevertheless, a log-rank test disclosed that the highest serum BRAT1-Ab levels were associated with poor ESCC prognosis at 5-60 weeks post-surgery. We validated the foregoing conclusions by comparing serum BRAT1-Ab and WDR1-Ab levels based on the clinicopathological characteristics of the patients with ESCC. Multiple statistical approaches established a correlation between serum BRAT1-Ab levels and platelet counts. BRAT1-Ab upregulation may enable early detection of AS and GI cancers and facilitate the delay of disease progression. Thus, BRAT1-Ab is a potential antibody biomarker for the diagnosis of AS and GI cancers and strongly supports the routine clinical application of liquid biopsy in chronic disease detection and diagnosis.

8.
Oxid Med Cell Longev ; 2019: 9675450, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019655

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias del Cuello Uterino/patología , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
9.
Food Funct ; 10(5): 2605-2617, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31020299

RESUMEN

The rhizome of Alpinia officinarum Hance, a popular spice used as a condiment in China and Europe, has various reported bioactivities, including anticancer, anti-inflammatory and antioxidant effects. However, its anti-angiogenic activity has not previously been reported. In this study, a diarylheptanoid was isolated from Alpinia officinarum and identified as 1-phenyl-7-(4-hydroxy-3-methoxyphenyl)-4E-en-3-heptanone (PHMH). We demonstrated that PHMH exerts anti-angiogenic activity both in vitro and in vivo. PHMH inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro, and also suppressed VEGF-induced sprout formation of rat aorta ex vivo. Furthermore, PHMH was found to block VEGF-induced vessel formation in mice and suppress angiogenesis in both zebrafish and chorioallantoic membrane models. Mechanistic studies indicated that PHMH inhibited VEGF-induced VEGF receptor-2 (VEGFR-2) auto-phosphorylation and resulted in the blockage of VEGFR-2-mediated signaling cascades in HUVECs, including the Akt/mTOR, ERK1/2, and FAK pathways. Our findings provide new insights into the potential application of PHMH as a therapeutic agent for anti-angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Diarilheptanoides/administración & dosificación , Medicamentos Herbarios Chinos/administración & dosificación , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Alpinia , Inhibidores de la Angiogénesis/química , Animales , Movimiento Celular/efectos de los fármacos , China , Diarilheptanoides/química , Medicamentos Herbarios Chinos/química , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra
11.
Front Pharmacol ; 8: 299, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28603496

RESUMEN

Anemone flaccida Fr. Schmidt (Ranunculaceae) (Di Wu in Chinese) is used to treat punch injuries and rheumatoid arthritis (RA). Our previous report has shown that crude triterpenoid saponins from Anemone flaccida exhibited anti-arthritic effects on type II collagen-induced arthritis in rats. Furthermore, anhuienoside C (AC), a saponin compound isolated from A. flaccida, was observed to suppress the nitric oxide production in lipopolysaccharide (LPS)-treated macrophage RAW 264.7 cells. In this study, we examined the effects of AC on the prevention and treatment of collagen-induced arthritis in a mouse model and evaluated the potential mechanisms involved. We observed that oral administration of AC significantly suppressed the paw swelling and arthritic score, decreased the body weight loss, and decreased the spleen index. Improvement in the disease severity was accompanied by the reduction of cluster of differentiation 68 (CD68)-positive cells in the ankle joint and inhibition of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) in the synovium of the joint. Mechanistic studies indicated that AC exerted its anti-inflammatory activity by inhibiting the mRNA expression levels of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α, interleukin (IL)-1ß, and IL-6 and by suppressing the production of inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 in LPS-treated RAW 264.7 cells. AC also blocked the LPS-induced activation of the extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase pathways. Additionally, the LPS-induced activation of nuclear factor kappa-B (NF-κB) was significantly suppressed by AC treatment, as indicated by down-regulation of TLR4 and inhibition of the nuclear translocation of NF-κB p65 and by activation and degradation of the inhibitor of kappa B. These findings indicated that AC has a great potential to be developed as a therapeutic agent for human RA.

12.
Chem Biol Interact ; 264: 1-9, 2017 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-28088315

RESUMEN

Paris saponins possess anticancer, anti-inflammatory, and antiviral effects. However, the anticancer effect of Paris saponins has not been well elucidated and the mechanisms underlying the potential function of Paris saponins in cancer therapy are needed to be further identify. In this study, we report that saponin compounds isolated from Paris polyphylla exhibited antitumor activity against breast cancer cell lines, MCF-7 and MDA-MB-231. Paris saponin XA-2 induced apoptosis in both cell lines, as evidenced by the activation of caspases and cleavage of Poly (ADP-ribose) polymerase. The ability of XA-2 to induce autophagy was confirmed by acridine orange staining, accumulation of autophagosome-bound Long chain 3 (LC3)-II, and measurement of autophagic flux. XA-2-induced autophagy was observed to promote apoptosis by the combined treatment of breast cancer cell lines with XA-2 and autophagy inhibitors 3-methyladenine and bafilomycin A1, respectively. Moreover, we report a decrease in the levels of Akt/mTOR signaling pathway proteins, such as the phosphorylated forms of Akt, mTOR, P70S6K, and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). Taken together, these results provide important insights explaining the anticancer activity of Paris saponins and the potential development of XA-2 as a new therapeutic agent.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Saponinas/química , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Liliaceae/química , Saponinas/aislamiento & purificación , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA