Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(31)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33735853

RESUMEN

The synthesis of a sustainable material through carbon nitride (C3N4) chemically grafted on waste-derived carbon including carbonizing coals (PM), melamine-urea-formaldehyde resins (MUF-C-1100), and luffa cylindrical sponges (SG), respectively, and its application as sulfur cathode in lithium-sulfur (Li-S) batteries were demonstrated. The Li-S cell assembled by the sulfur (S) cathode with component from C3N4grafted coal-derived carbon (PM-CN) possesses a specific capacity of 1269.8 mA h g-1at 0.05 C. At 1 C, the initial specific capacity of PM cathode is only 380.0 mA h g-1, comparable to the PM-CN5 cathode of 681.9 mA h g-1, and PM-CN10 cathode of 580.7 mA h g-1, respectively. And, PM-CN 5 cathode presents the capacity retention of 75.9% with a coulomb efficiency (C.E.) of 97.3% after 200 cycles. The MUF-CN cathode gives a specific capacity of 1335.6 mA h g-1at 0.05 C, and the capacity retention of 66.7% with a C. E. of 93.6% after 300 cycles at 0.5 C. The SG-CN cathode had a specific capacity of 953.9 mA h g-1at 0.05 C, and capacity retention of 95.1% with a C. E. of 98.2% after 125 cycles at 1 C. The remarkable improved performances were mainly ascribed to the sustainable materials as S host with micro-meso pore and C3N4structure providing the strong affinity N sites to lithium polysulfides (LiPSs). This work provides an attractive approach for the preparation of sustainable materials by rational design of grafting C3N4to waste-derived carbons with functions as S cathode materials for high-performance Li-S batteries.

2.
Nanotechnology ; 29(3): 035202, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29251266

RESUMEN

The resistive random access memory (RRAM) devices with heterostuctures have been investigated due to cycling stability, nonlinear switching, complementary resistive switching and self-compliance. The heterostructured devices can modulate the resistive switching (RS) behavior appropriately by bilayer structure with a variety of materials. In this study, the bipolar resistive switching characteristics of the bilayer structures composed of Ta2O5 and Ag2Se, which are transition-metal oxide (TMO) and silver chalcogenide, were investigated. The bilayer devices of Ta2O5 deposited on Ag2Se (Ta2O5/Ag2Se) and Ag2Se deposited on Ta2O5 (Ag2Se/Ta2O5) were fabricated for investigation of the RS characteristics by stacking sequence of Ta2O5 and Ag2Se. All operating voltages were applied to the Ag top electrode with the Pt bottom electrode grounded. The Ta2O5/Ag2Se device showed that a negative voltage sweep switched the device from high resistance state (HRS) to low resistance state (LRS) and a positive voltage sweep switched the device from LRS to HRS. On the contrary, for the Ag2Se/Ta2O5 device a positive voltage sweep switched the device from HRS to LRS, and a negative voltage sweep switched it from LRS to HRS. The polarity dependence of RS was attributed to the stacking sequence of Ta2O5 and Ag2Se. In addition, the combined heterostructured device of both bilayer stacks, Ta2O5/Ag2Se and Ag2Se/Ta2O5, exhibited the complementary switching characteristics. By using threshold switching devices, sneak path leakage can be reduced without additional selectors. The bilayer heterostructures of Ta2O5 and Ag2Se have various advantages such as self-compliance, reproducibility and forming-free stable RS. It confirms the possible applications of TMO and silver chalcogenide heterostructures in RRAM.

3.
J Nanosci Nanotechnol ; 12(3): 1979-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22755008

RESUMEN

The reflectivity spectra and color of porous anodic aluminum oxide (AAO) nanostructures containing the assembly of silver (Ag) nanoparticles (NPs) with a diameter of -10 nm were investigated. The Ag NPs were assembled inside the pores of AAO with a diameter of -60 nm by dip-coating process during which Ag NPs adsorbed on the surface of AAO and driven inside the pores by capillary force upon the evaporation of solvent. The reflectivity spectra and associated colors of AAO with Ag NPs were determined by the plasmonic absorption of light by Ag NPs. Even with the monolayer coverage of Ag NPs in the pores of AAO, the reflectivity is significantly reduced specifically at -465 nm wavelength by a strong plasmonic absorption, resulting in its golden color. Aggregating Ag NPs by post-annealing at 300 and 400 degrees C changed the color to pink due to the red-shift of absorption. These results are indicative of potential color-engineering of NPs/AAO platform by wavelength-selective reduction of reflected light intensity and using it in direct optical read-out of change of surface and morphology conditions.

4.
J Nanosci Nanotechnol ; 12(2): 1709-12, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22630035

RESUMEN

The chemically synthesized colloidal gamma-Fe2O3 and FePt nanoparticles (NPs), with the diameter of approximately 10 nm and approximately 4 nm, respectively, adsorbed and assembled on the surface of carbon nanotubes (CNTs) by dip-coating process, through van der Waals interaction between NP and CNT. Repeating the steps of dip-coating and removing the surfactants from NPs significantly increased the amount of NPs as forming multilayers on the CNT. In addition, the electrochemical activities of FePt/CNTs for methanol oxidation were investigated for the potential application as catalysts of direct methanol fuel cells.

5.
J Nanosci Nanotechnol ; 11(7): 6044-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22121655

RESUMEN

In this study, it is demonstrated that an organic memory structure using pentacene and citrate-stabilized silver nanoparticles (Ag NPs) as charge storage elements on dielectric SiO2 layer and silicon substrate. The Ag NPs were synthesized by thermal reduction method of silver trifluoroacetate with oleic acid. The synthesized Ag NPs were analyzed with high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) for their crystalline structure. The capacitance versus voltage (C-V) curves obtained for the Ag NPs embedded capacitor exhibited flat-band voltage shifts, which demonstrated the presence of charge storages. The citrate-capping of the Ag NPs was confirmed by ultraviolet-visible (UV-VIS) and Fourier transformed infrared (FTIR) spectroscopy. With voltage sweeping of +/-7 V, a hysteresis loop having flatband voltage shift of 7.1 V was obtained. The hysteresis loop showed a counter-clockwise direction. In addition, electrical performance test for charge storage showed more than 10,000 second charge retention time. The device with Ag NPs can be applied to an organic memory device for flexible electronics.

6.
RSC Adv ; 9(65): 38271-38279, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35541806

RESUMEN

A facile synthesis of perovskite-type CeMnO3 nanofibers as a high performance anode material for lithium-ion batteries was demonstrated. The nanofibers were prepared by the electrospinning technique. The characterization of CeMnO3 nanofibers was carried out by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy. SEM images manifested nanofibers with a diameter of 470 nm having a rough surface with a porous structure. TEM images were consistent with the observations from the SEM images. The electrochemical properties of CeMnO3 perovskite in lithium-ion batteries were investigated. The CeMnO3 anode exhibited a discharge capacity of 2159 mA h g-1 with a coulombic efficiency of 93.79%. In addition, a high cycle stability and a capacity of 276 mA h g-1 at the current density of 1000 mA g-1 can be effectively maintained due to the high Li+ conductivity in the CeMnO3 anode. This study could provide an efficient and potential application of perovskite-type CeMnO3 nanofibers in lithium-ion batteries.

7.
ACS Omega ; 4(22): 19655-19663, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31788596

RESUMEN

Photocatalytic oxidation treatment is an emerging and fast developed eco-friendly, energy-saving, and efficient advanced oxidation technology for degrading hazardous pesticides. The conventional chemical detection to evaluate the effects for this process depends on the broken chemical structure, only giving residual content and product chemical composition. However, it misses direct visual detection on the toxicity and the quantitative analysis of pesticide detoxification. Here, we develop a novel strategy to combine photocatalytic oxidation with a zebrafish biological model to provide a direct visual detection on the environmental detoxification. The mortality or deformity of zebrafish embryos (ZEs) acts as an indicator. Over the irradiation duration threshold, the mortality of ZEs decreases to 23.3% for pure chlorothalonil (CTL-P) after photocatalytic oxidation treatment for 1 h, and the deformity reduces to 13.3% for commercial CTL (CTL-C) after 30 min and to 3.33% for tetramethylthiuram disulfide (TMTD) after 20 min. The toxicity of CTL-C and TMTD could be completely removed by photocatalytic oxidation treatment and causes no damage to the ZE developmental morphology. Chemical analyses demonstrate the degradation of CTL into inorganic compounds and TMTD into small organic molecules. Among these highlighted heterogeneous photocatalysts (g-C3N4, BiVO4, Ag3PO4, and P25), g-C3N4 exhibits the highest photocatalytic detoxification for CTL-P, CTL-C, and TMTD.

8.
J Nanosci Nanotechnol ; 5(2): 255-8, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15853144

RESUMEN

SiC nanowires are effective reinforcement materials in ceramic matrix composites. A compliant coating such as carbon on nanowires is necessary in order to moderate the nanowire/matrix interfacial bounding for taking the most advantages of SiC nanowires. SiC nanowires with an in-situ deposition of carbon shell coating were fabricated by a novel chemical vapor growth process. Highresolution transmission electron microscopy examinations showed that the nanowires consisted of a single crystal beta-SiC core with an amorphous carbon shell 2-5 nm in thickness. The nanowires were straight with a length generally over 10 microm and a diameter 15-150 nm. The growth direction of the core SiC nanowires is (111). A simple three-step growth model for SiC nanowires was proposed based on a vapor-solid growth mechanism. Because the carbon-coated nanowires were grown directly on continuous Tyranno-SA SiC fibers, in-situ application of the present technique on the fabrication of SiC nanowire-reinforced SiC/SiC composites is expected.


Asunto(s)
Carbono/química , Nanoestructuras/química , Nanotecnología/métodos , Silicio/química , Instalación Eléctrica , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanoestructuras/ultraestructura
9.
J Nanosci Nanotechnol ; 15(11): 8613-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26726561

RESUMEN

The fabrication of hybrid structure with TiO2 nanoparticle assembly and Ta2O5 thin film layer was demonstrated. The close-packed nanoparticles could influence the resistive switching behaviors due to the huge numbers of interface states and vacancies in the nanoparticle assembly. The device with hybrid structure presented the typical bipolar resistive switching characteristics in the structure of Ti/TiO2/Ta2O5/Au on SiO2/Si substrate. The set voltage was observed at -0.7 V, and the reset voltage occurred at (-)-0.7 V, which was smaller than that of Ta2O5 layer only. The electrical conduction mechanisms were the ohmic conduction at low resistance state (LRS) and the space charge limited conduction at high resistance state (HRS), respectively. The devices showed stable current ratio of LRS to HRS. The temperature dependent properties of the devices were also investigated. The device with nanoparticle assembly showed better electrical characteristics with low HRS current level and stable LRS current level with respect to the temperature.

10.
J Nanosci Nanotechnol ; 15(10): 7564-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26726372

RESUMEN

To investigate the nature of the switching phenomenon at the metal-tantalum oxide interface, we fabricated a memory device in which a tantalum oxide amorphous layer acted as a switching medium. Different metals were deposited on top of the tantalum oxide layer to ensure that they will react with some of the oxygen contents already present in the amorphous layer of the tantalum oxide. This will cause the formation of metal oxide (MOx) at the interface. Two devices with Ti and Cu as the top electrodes were fabricated for this purpose. Both devices showed bipolar switching characteristics. The SET and RESET voltages for the Ti top electrode device were ~+1.7 V and ~-2 V, respectively, whereas the SET and RESET voltages for the Cu top electrode device were ~+0.9 V and ~-0.9 V, respectively. In the high-resistance state (HRS) conduction, the mechanisms involved in the devices with Ti and Cu top electrodes were space-charge limited conduction (SCLC) and ohmic, respectively. On the other hand, in the low-resistance state (LRS), the Ti top electrode device undergoes SCLC at a high voltage and ohmic conduction at a low voltage, and the Cu top electrode again undergoes ohmic conduction. From the consecutive sweep cycles, it was observed that the SET voltage gradually decreased with the sweeps for the Cu top electrode device, whereas for the Ti top electrode device, the set voltage did not vary with the sweeps.

11.
J Nanosci Nanotechnol ; 14(11): 8182-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25958496

RESUMEN

The fabrication of 3 x 3 crossbar arrays measuring 20 µm in width was demonstrated. The bipolar resistive switching characteristics in manganese oxide nanoparticles were investigated in the crossbar structure of top electrode (Au)/nanoparticle assembly/bottom electrode (Ti) on SiO2/Si substrate. The monodisperse manganese oxide nanoparticles measuring 13 nm in diameter were chemically synthesized by thermal decomposition of manganese acetate in the presence of oleic acid at high temperature. The nanoparticles were assembled as a layer measuring 30 nm thick by repeated dip-coating and annealing steps. The Au/nanoparticle assembly/Ti devices performed the bipolar behavior associated with the formation and sequential rupture of multiple conducting filaments in applying bias on Au electrode. When the voltage was swept from to +5 V to the Au top electrode, the reset voltage was observed at - 4.4 V. As the applied voltage swept from 0 to -5 V, the set voltage occurred at (-) -1.8 V.

12.
Nanoscale ; 5(2): 772-9, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23235888

RESUMEN

Tunable threshold resistive switching characteristics of Pt-Fe(2)O(3) core-shell nanoparticle (NP) assembly were investigated. The colloidal Pt-Fe(2)O(3) core-shell NPs with a Pt core diameter of ∼3 nm and a total diameter of ∼15 nm were chemically synthesized by a one-step process. These NPs were assembled as a layer with a thickness of ∼80 nm by repeated dip-coating between Ti and Pt electrodes on a flexible polyethersulfone (PES) substrate. The Ti/NPs/Pt/PES structure exhibited the threshold switching, i.e. volatile transition from high to low resistance state at a high voltage and vice versa at a low voltage. The current-voltage measurements after charging and discharging NPs revealed that the resistance state and threshold switching voltage of the assembly could be tuned by the space charges stored in high density trap sites of Pt cores in Pt-Fe(2)O(3) core-shell NP assembly. These results demonstrated the possible tuning of threshold switching of core-shell NP assembly by the space charge effect, which can be potentially utilized for the tunable selection device element in nonvolatile memory circuits.

13.
Sheng Wu Gong Cheng Xue Bao ; 22(6): 984-9, 2006 Nov.
Artículo en Zh | MEDLINE | ID: mdl-17168324

RESUMEN

The commercial application of plant cell cultures is often hindered by the instability of secondary metabolite biosynthesis, where the metabolite yield fluctuates and decline dramatically over subcultures. This study proposed that such instability is due to the fluctuations of culture variables. To validate this hypothesis, the effects of the fluctuations of two culture variables (subculture cycle and inoculum size) on the biomass, anthocyanin biosynthesig, intracellular carbon, nitrogen and phosphate during continuous 10 subculture cycles were investigated. The subculture cycle was fluctuated for 12h in a 7 day cycle (6.5, 7 and 7.5 d), and the inoculum size was fluctuated by 20% on basis of 2.00 g (1.60, 2.00 and 2.40 g). It was found that all the measured culture parameters fluctuated over the 10 subculture cycles. The fluctuation in terms of inoculum sizes had a greater effect on the stability of anthocyanin biosynthesis in suspension cultures of V. vinifera. Among all the subculture conditions investigated, 7d-subculture cycle and 1.60 g-inoculum size was the best one to hold the relatively stable anthocyanin production. The anthocyanin yield presented a negative correlation with intracellular sucrose content or intracellular total phosphate content.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Vitis/citología , Antocianinas/biosíntesis , Metabolismo de los Hidratos de Carbono , Espacio Intracelular/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Suspensiones , Vitis/crecimiento & desarrollo , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA