Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Nano ; 18(1): 428-435, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38126714

RESUMEN

Previous electrochemically powered yarn muscles cannot be usefully operated between extreme negative and extreme positive potentials, since generated stresses during anion injection and cation injection partially cancel because they are in the same direction. We here report an ionomer-infiltrated hybrid carbon nanotube (CNT) yarn muscle that shows unipolar stress behavior in the sense that stress generation between extreme potentials is additive, resulting in an enhanced stress generation. Moreover, the stress generated by this muscle unexpectedly increases with the potential scan rate, which contradicts the fact that scan-rate-induced stress decreases for neat CNT muscles. It is revealed by the electro-osmotic pump effect that the effective ion size injected into the muscle increases with an increase in the scan rate. We demonstrate an electrochemically powered gel-elastomer-yarn muscle adhesive that generates and delivers muscle-contraction-mimicking stimulation to a target tissue.

2.
Small Methods ; 8(7): e2301495, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308323

RESUMEN

Field-driven transport systems offer great promise for use as biofunctionalized carriers in microrobotics, biomedicine, and cell delivery applications. Despite the construction of artificial microtubules using several micromagnets, which provide a promising transport pathway for the synchronous delivery of microrobotic carriers to the targeted location inside microvascular networks, the selective transport of different microrobotic carriers remains an unexplored challenge. This study demonstrated the selective manipulation and transport of microrobotics along a patterned micromagnet using applied magnetic fields. Owing to varied field strengths, the magnetic beads used as the microrobotic carriers with different sizes revealed varied locomotion, including all of them moving along the same direction, selective rotation, bidirectional locomotion, and all of them moving in a reversed direction. Furthermore, cells immobilized with magnetic beads and nanoparticles also revealed varied locomotion. It is expected that such steering strategies of microrobotic carriers can be used in microvascular channels for the targeted delivery of drugs or cells in an organized manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA