Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994869

RESUMEN

Metasurfaces have revolutionized optical technologies by offering powerful, compact, and versatile solutions to control light. Conducting polymers, characterized by their conjugated molecular structures, facilitate charge transport and exhibit interesting electrical, optical, and mechanical properties. Integrating conducting polymers with optical metasurfaces can unlock new opportunities and functionalities in modern optics. In this work, we demonstrate an electrochemically programmable metasurface with independently controlled metasurface pixels at optical frequencies. Electrochemical modulation of locally conjugated polyaniline on gold nanorods, which are arranged on addressable electrodes according to the Pancharatnam-Berry phase design, enables dynamic control over the metasurface pixels into programmable configurations. With the same metasurface device, we showcase diverse optical functions, including dynamic beam diffraction and varifocal lensing along and off the optical axis. The synergy between flat optics and conducting polymer science holds immense potential to enhance the performance and function versatility of metasurfaces, paving the way for innovative optical applications.

2.
Nanotechnology ; 35(24)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38478979

RESUMEN

In the realm of molecular detection, the surface-enhanced Raman scattering (SERS) technique has garnered increasing attention due to its rapid detection, high sensitivity, and non-destructive characteristics. However, conventional rigid SERS substrates are either costly to fabricate and challenging to prepare over a large area, or they exhibit poor uniformity and repeatability, making them unsuitable for inspecting curved object surfaces. In this work, we present a flexible SERS substrate with high sensitivity as well as good uniformity and repeatability. First, the flexible polydimethylsiloxane (PDMS) substrate is manually formulated and cured. SiO2/Ag layer on the substrate can be obtained in a single process by using ion beam sputtering. Then, reactive ion etching is used to etch the upper SiO2layer of the film, which directly leads to the desired densely packed nanostructure. Finally, a layer of precious metal is deposited on the densely packed nanostructure by thermal evaporation. In our proposed system, the densely packed nanostructure obtained by etching the SiO2layer directly determines the SERS ability of the substrate. The bottom layer of silver mirror can reflect the penetrative incident light, the spacer layer of SiO2and the top layer of silver thin film can further localize the light in the system, which can realize the excellent absorption of Raman laser light, thus enhancing SERS ability. In the tests, the prepared substrates show excellent SERS performance in detecting crystalline violet with a detection limit of 10-11M. The development of this SERS substrate is anticipated to offer a highly effective and convenient method for molecular substance detection.

3.
Opt Express ; 31(6): 10489-10499, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157594

RESUMEN

Metalenses can achieve diffraction-limited focusing via localized phase modification of the incoming light beam. However, the current metalenses face to the restrictions on simultaneously achieving large diameter, large numerical aperture, broad working bandwidth and the structure manufacturability. Herein, we present a kind of metalenses composed of concentric nanorings that can address these restrictions using topology optimization approach. Compared to existing inverse design approaches, the computational cost of our optimization method is greatly reduced for large-size metalenses. With its design flexibility, the achieved metalens can work in the whole visible range with millimeter size and a numerical aperture of 0.8 without involving high-aspect ratio structures and large refractive index materials. Electron-beam resist PMMA with a low refractive index is directly used as the material of the metalens, enabling a much more simplified manufacturing process. Experimental results show that the imaging performance of the fabricated metalens has a resolution better than 600 nm corresponding to the measured FWHM of 745 nm.

4.
Exp Cell Res ; 419(2): 113302, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987381

RESUMEN

Ischemic stroke (IS) is the most common type of stroke, and its pathophysiological process is more complex. In recent years, the key regulatory roles of non-coding RNA (miRNA, circRNA) and mRNA in the development of IS have attracted more attention. In the process of cerebral ischemia/reperfusion injury, circRNA can regulate nerves, blood vessels and immune system through miRNA/mRNA axis, so as to affect the neurovascular unit of IS. The combination of these noncoding RNAs and mRNAs can be used as non-invasive biomarkers and therapeutic tools for IS diagnosis, prognosis and brain injury. Therefore, it is very important to study the potential molecular mechanism, activation pathway and treatment methods of circRNA/miRNA/mRNA network in IS. This review will focus on the latest progress of circRNA/miRNA/mRNA regulatory network, we have also included some circRNAs, which does not mediate through a miRNA, so we also include circRNA -mRNA network. And explore the application prospect of these RNAs as potential therapeutic targets in the prevention and treatment of IS.


Asunto(s)
Isquemia Encefálica , MicroARNs , Daño por Reperfusión , Isquemia Encefálica/genética , Redes Reguladoras de Genes/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Daño por Reperfusión/genética
5.
Nano Lett ; 22(24): 10049-10056, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36473130

RESUMEN

Tunable metasurfaces provide a compact and efficient strategy for optical active wavefront shaping. Varifocal metalens is one of the most important applications. However, the existing tunable metalens rarely serves broadband wavelengths restricting their applications in broadband imaging and color display due to chromatic aberration. Herein, an electrically tunable polarization-multiplexed achromatic metalens integrated with twisted nematic liquid crystals (TNLCs) in the visible region is demonstrated. The phase profiles at different wavelengths under two orthogonal polarization channels are customized by the particle swarm optimization algorithm and matched with the dielectric metaunits database to achieve polarization-multiplexed achromatic performance. By combining the broadband linear polarization conversion ability of TNLC, the tunability of varifocal achromatic metalens is realized by applying different voltages. Further, the electrically tunable customized dispersion-manipulated metalens and switchable color metaholograms are demonstrated. The proposed devices will accelerate the application of metasurfaces in broadband zoom imaging, AR/VR displays and spectral detection.

6.
Mol Pharm ; 19(8): 2854-2867, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35801946

RESUMEN

This paper treats the drug release process as a phase-field problem and a phase-field model capable of simulating the dynamics of multiple moving fronts, transient drug fluxes, and fractional drug release from swellable polymeric systems is proposed and validated experimentally. The model can not only capture accurately the positions and movements of the distinct fronts without tracking the locations of fronts explicitly but also predict well the release profile to the completion of the release process. The parametric study has shown that parameters including water diffusion coefficient, drug saturation solubility, drug diffusion coefficient, initial drug loading ratio, and initial porosity are critical in regulating the drug release kinetics. It has been also demonstrated that the model can be applied to the study of swellable filaments and has wide applicability for different materials. Due to explicit boundary position tracking being eliminated, the model paves the way for practical use and can be extended for dealing with geometrically complex drug delivery systems. It is a useful tool to guide the design of new controlled delivery systems fabricated by fused filament fabrication.


Asunto(s)
Polímeros , Agua , Liberación de Fármacos , Cinética , Preparaciones Farmacéuticas , Solubilidad , Comprimidos
7.
Nano Lett ; 21(11): 4554-4562, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34047184

RESUMEN

Metasurfaces open up new avenues for designing planar optics, enabling compact dynamic metadevices. Numerous dynamic strategies have been proposed, among which liquid crystal (LC) based metasurfaces are expected due to the maturity of LC materials. However, existing schemes rarely exploit the polarization manipulation capabilities of metasurfaces and the limited performance hinders the development of practical addressable devices. Here, we demonstrate an electrically tunable multifunctional polarization-dependent metasurface integrated with LCs in the visible range. By a combination of the helicity-dependent metasurface and the birefringent LCs, continuous intensity tuning and switching of two helicity channels are realized. Electrically tunable mono- and multicolor switchable metaholograms and dynamic varifocal metalenses are demonstrated with a simple and performance-enhancing integration scheme. Further, electrically addressable dynamic metasurfaces are achieved. The proposed modulation and integration schemes pave the way for addressable dynamic metasurface devices in various applications, such as space light modulators, light detection and ranging systems, and holographic displays.

8.
Nanotechnology ; 32(29)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33780911

RESUMEN

Polymer nanostructures have drawn tremendous attention due to their wide applications in nanotechnology. However, the morphology of the polymer nanostructures is fragile under harsh conditions such as high-power irradiation and organic-solution environments during the fabrication or the measurement processes, significantly limiting their potential applications. In this work, we propose and demonstrate a simple approach to improve the stability of polymer nanostructures by coating a conformal ultrathin oxide film via atomic-layer deposition. Due to the refractory and dense coating of the oxide layer, the stability of polymer structures is enhanced by the prohibition of deformation occurrences from thermally induced reflow and organic solution. As a proof of concept, poly(methyl methacrylate) (PMMA) nanostructures coated with a sub-10-nm TiO2layer are demonstrated, and the structures exhibit high temperature stability at 180 °C and good resistance to soluble damage from organic solutions. Subsequently, the mechanism of the improved thermal stability is analyzed via mechanical simulations. Such an effective approach is proposed to significantly broaden the application of polymer nanostructures as functional elements for optical structures/devices that require excellent thermal and chemical stability.

9.
Nano Lett ; 20(2): 994-1002, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31880939

RESUMEN

Metasurfaces hold great potentials for advanced holographic display with extraordinary information capacity and pixel sizes in an ultrathin flat profile. A dual-polarization channel to encode two independent phase profiles or spatially multiplexed meta-holography by interleaved metasurfaces are captivated popular solutions to projecting multiplexed and vectorial images. However, the intrinsic limit of orthogonal polarization-channels, their crosstalk due to coupling between meta-atoms, and interleaving-induced degradation of efficiency and reconstructed image quality set great barriers for sophisticated meta-holography from being widely adopted. Here we report a noninterleaved TiO2 metasurface holography, and three distinct phase profiles are encoded into three orthogonal polarization bases with almost zero crosstalk. The corresponding three independently constructed intensity profiles are therefore assigned to trichromatic (RGB) beams, resulting in high-quality and high-efficiency vectorial meta-holography in the whole visible regime. Our strategy presents an unconventionally advanced holographic scheme by synergizing trichromatic colors and tripolarization channels, simply realized with a minimalist noninterleaved metasurface. Our work unlocks the metasurface's potentials on massive information storage, polarization optics, polarimetric imaging, holographic data encryption, etc.

10.
Cell Biochem Funct ; 37(7): 504-515, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31368195

RESUMEN

The treatment of neural deficiency after cerebral infarction is challenging, with limited therapeutic options. The transplantation of mesenchymal stem cells (MSCs) to the ischemic penumbra is a potential therapeutic approach. In the present study, a cerebral infarction model was generated by performing middle cerebral artery occlusion (MCAO) in SD rats. The expression of CXCR4 increased, and the number of MSCs migrating to the peri-infarct area was higher in rats transplanted with preconditioned MSCs than in rats transplanted with untreated MSCs. The rate of apoptosis, as evaluated by TUNEL staining and immunoblotting assays, was reduced in rats receiving preconditioned MSCs. A significant amelioration of neural regeneration and improved neurological function were observed in rats injected with preconditioned MSCs compared with those injected with untreated MSCs. However, the application of an siRNA targeting CXCL12 significantly inhibited the protective role of preconditioned MSCs against apoptosis and promoted the migration of MSCs to the ischemic area, leading to impaired neuronal regeneration and limited recovery of neuronal function. Hypoxic preconditioning of MSCs prior to transplantation suppressed apoptosis and increased their migration abilities, leading to the promotion of neuronal regeneration and improvement in neural function after transplantation. This preconditioning strategy may be considered as a potential approach for the modification of MSCs prior to cell transplantation therapy in patients with cerebral infarction. SIGNIFICANCE OF THE STUDY: We found that hypoxic preconditioning of MSCs improved their ability to promote neuronal regeneration and the recovery of neuronal function. Moreover, we showed that CXCR4 inhibited apoptosis, improved cell homing, and promoted neuronal differentiation, without influencing angiogenesis. Our study provides a relatively safe preconditioning method for potential use for cell transplantation therapy in ischemic cerebral infarction. The results presented here will facilitate the development of novel strategies and techniques to improve the tolerance and migration ability of transplanted cells for the treatment of cerebral infarction sequelae.


Asunto(s)
Infarto Cerebral/metabolismo , Quimiocina CXCL12/metabolismo , Modelos Animales de Enfermedad , Hipoxia , Células Madre Mesenquimatosas/metabolismo , Receptores CXCR4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular , Infarto Cerebral/terapia , Quimiocina CXCL12/antagonistas & inhibidores , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Neuronas , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
11.
Opt Express ; 25(15): 17571-17580, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789249

RESUMEN

Plasmonic focusing was investigated in concentric rings with a central pillar under linearly polarized illumination with a specific incident angle. When changing the incident angle of linearly polarized beam between 6 and 15 degree away from the normal direction, the focal spot size can keep a steady value of 37 nm, smaller than the focal spot with the radially polarized beam at the same excited condition, 45 nm. Combining this with the high-speed near-field photolithography technology, we demonstrated a plasmonic lithography with 16.85 nm linewidth on both organic and inorganic photo-resists in large scale at scanning speeds up to 11.3 m/s. This inclined linearly polarized illumination is easy to realize in a prototype of near-field photolithography system, and it opens a new cost effective approach towards the next generation lithography for nano-manufacturing.

12.
Nanotechnology ; 27(18): 185303, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27010406

RESUMEN

The near-field photolithography technique (NFPT) offers a new approach of nanolithography for a dramatic increase in the resolution with high throughput and low cost. The NFPT utilizes the same flight principle as that of the magnetic head of hard-disk drives but replacing the magnetic head with a plasmonic flying head. The plasmonic flying head, which can focus the incident laser beam to a spot size of sub-20 nm with an enhanced field intensity by exciting surface plasmon polaritons, takes off and then flies steadily above the revolving disk coated by a photoresist film to be patterned with a narrow gap of tens of nanometers. As a key foundation of the NFPT, the take off and flight stability of the plasmonic flying head affects the pattern density and the fabrication efficiency. This work proposed and investigated a molecular glass photoresist, named FPT-8Boc, for the large-scale consistent fabrication with the NFPT. To overcome the take-off problem of the head over the soft photoresist film, a transition zone is intentionally formed by washing off the coated photoresist in the outer area of the disk using a solvent. The simulation results by COMSOL Multiphysics software and quasi-Newton iteration method review that the matched transition zone height with spreading length can guarantee the flight stability of the plasmonic flying head on the soft photoresist. Using this method, a preliminary photolithography result with a 31 nm line width has been achieved.

13.
Tohoku J Exp Med ; 237(1): 57-67, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-26353909

RESUMEN

Vascular dementia (VD) has been one of the most serious public health problems worldwide. It is well known that cerebral hypoperfusion is the key pathophysiological basis of VD, but it remains unclear how global genes in hippocampus respond to cerebral ischemia-reperfusion. In this study, we aimed to reveal the global gene expression profile in the hippocampus of VD using a rat model. VD was induced by repeated occlusion of common carotid arteries followed by reperfusion. The rats with VD were characterized by deficit of memory and cognitive function and by the histopathological changes in the hippocampus, such as a reduction in the number and the size of neurons accompanied by an increase in intercellular space. Microarray analysis of global genes displayed up-regulation of 7 probesets with genes with fold change more than 1.5 (P < 0.05) and down-regulation of 13 probesets with genes with fold change less than 0.667 (P < 0.05) in the hippocampus. Gene Ontology (GO) and pathway analysis showed that the up-regulated genes are mainly involved in oxygen binding and transport, autoimmune response and inflammation, and that the down-regulated genes are related to glucose metabolism, autoimmune response and inflammation, and other biological process, related to memory and cognitive function. Thus, the abnormally expressed genes are closely related to oxygen transport, glucose metabolism, and autoimmune response. The current findings display global gene expression profile of the hippocampus in a rat model of VD, providing new insights into the molecular pathogenesis of VD.


Asunto(s)
Demencia Vascular/genética , Expresión Génica/genética , Hipocampo/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Estenosis Carotídea/complicaciones , Estenosis Carotídea/genética , Estenosis Carotídea/fisiopatología , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Encefalitis/etiología , Encefalitis/patología , Glucosa/metabolismo , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Análisis por Micromatrices , Consumo de Oxígeno , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/complicaciones , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatología , Regulación hacia Arriba
14.
Exp Gerontol ; 195: 112530, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39059516

RESUMEN

BACKGROUND: The gut microbiota (GM) plays an important role in the development of immune-related diseases, and the immune response is one of the pathomechanisms of depression (Dep); whether the effect of GM on Dep is mediated by immune cells (ImC) is unclear. OBJECTIVE: ImC may mediate the effect of GM on Dep. Our aim is to identify and quantify the role of immune characteristics as potential mediators. METHODS: Pooled statistics for GM (n = 7738) and ImC (n = 3757) were obtained from publicly available genome-wide association studies (GWAS), and for Dep (n = 47,696) from the Finnish database R10. We used a mediated Mendelian randomization (MR) study to investigate the causal relationship between GM and Dep and the mediating role of ImC between GM and Dep associations. RESULTS: The results showed that the genetically predicted GM was significantly correlated with both ImC as well as Dep. MR analysis identified five microbiomes that had significant causal effects on Dep (Methionine biosynthesis III, PWY-6737-Starch degradation V, Parasutterella excrementihominis, Parasutterella, and Lysine biosynthesis I). In addition, five of the 26 ImC trait significantly associated with GM were most closely associated with Dep (T cell %lymphocyte、CD28-CD127-CD25++CD8br AC、CD28-CD8br AC、CD27 receptor on peripheral blood plasma cells (CD27 on PB/PC) and CD11b receptor on mononuclear myeloid-derived suppressor cells (CD11b on Mo MDSC)). This mediated MR illustrates the causal role of methionine biosynthesis III on Dep (IVW: OR = 1.08, 95%CI [1.04,1.14], P = 0.001). And there was no strong evidence for a causal effect of depression on methionine biosynthesis III. In the B cell group, the proportion of CD27 on PB/PC mediated was 7.88 %(95%CI [-0.04,0.03]) of the total effect. This study further suggests that Dep patients should actively seek immunologic intervention therapy. CONCLUSION: This MR study found that GM may play a causal role in Dep by mediating ImC. Our findings will help to understand the pathogenic mechanism of GM in Dep and the risk of immune mediation.

15.
Exp Gerontol ; 191: 112448, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697555

RESUMEN

BACKGROUND: Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE: This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS: Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS: We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, ß-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100ß and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION: This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.


Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , FN-kappa B , Farmacología en Red , Daño por Reperfusión , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Exp Gerontol ; 195: 112532, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068693

RESUMEN

BACKGROUND: Globally, Parkinson's disease (PD) is one of the common neurodegenerative diseases in the elderly with increasing morbidity and disability, and its clinical pathogenesis is not clear. OBJECTIVE: To compare the differences in disease severity and blood biomarkers levels and their correlation between patients with early-onset Parkinson's disease (EOPD) and late-onset Parkinson's disease (LOPD). METHODS: A total of 342 patients diagnosed with PD were retrospectively collected. PD patients were categorized into EOPD (24 patients) and LOPD (318 patients) according to the age of onset of the disease. The Hoehn-Yahr (HY) staging was used to assess the severity of the disease in PD patients. Subjective rating scales such as the Mini-mental State Examination (MMSE) were used to assess the motor and non-motor functions of the patients. The differences of objective blood biomarkers such as triglyceride (TG) between the two groups were investigated. The correlation between them and PD was explored by logistic analysis. RESULTS: Percentage of EOPD group with HY staged as intermediate to late and Scales for Outcomes in Parkinson's Disease-Autonomic (SCOPA-AUT), Movement Disorder Society-Unified Parkinson's disease Rating Scale-III (MDS-UPDRS-III), Montreal Cognitive Assessment (MoCA) score and TG, non-high-density lipoprotein-cholesterol (N-HDL-C), homocysteine (HCY), apolipoprotein B (Apo-B), free triiodothyronine (FT3), free thyroxine (FT4), high-sensitivity C-reactive protein (hs-CRP) levels were lower than those in the LOPD group (P < 0.05); and the proportion of HY staged as early stage, Hamilton Anxiety Scale (HAMA) and Fatigue severity scale (FSS) scores and the levels of vitamin B12 were higher than those in the LOPD group (P < 0.05). The results of Multifactorial Logistic regression analysis showed that N-HDL-C [OR = 1.409, 95 % CI (1.063, 1.868)], Apo-B [OR = 0.797, 95 % CI (0.638, 0.997)], Vitamin B12 [OR = 0.992, 95 % CI (0.987, 0.998)] and hs-CRP [OR = 1.124, 95 % CI (1.070, 1.182)] were independent factors affecting the severity of PD, with significant differences between groups (P < 0.05). CONCLUSION: N-HDL-C, Apo-B, Vitamin B12, and hs-CRP levels play an important role in the progression of PD.

17.
Neuroscience ; 551: 246-253, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38843987

RESUMEN

Recent studies evidenced the involvement of circular RNA (circRNA) in neuroinflammation, apoptosis, and synaptic remodeling suggesting an important role for circRNA in the occurrence and development of epilepsy. This review provides an overview of circRNAs considered to be playing regulatory roles in the process of epilepsy and to be involved in multiple biological epilepsy-related processes, such as hippocampal sclerosis, inflammatory response, cell apoptosis, synaptic remodeling, and cell proliferation and differentiation. This review covers the current research status of differential expression of circRNA-mediated seizures, m6A methylation, demethylation-mediated seizures in post transcriptional circRNA modification, as well as the mechanisms of m5C- and m7G-modified circRNA. In summary, this article reviews the research progress on the relationship between circRNA in non-coding RNA and epilepsy.


Asunto(s)
Epilepsia , ARN Circular , ARN Circular/metabolismo , ARN Circular/genética , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Animales
18.
Nat Commun ; 15(1): 4022, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740787

RESUMEN

The vectorial optical field (VOF) assumes a pivotal role in light-matter interactions. Beyond its inherent polarization topology, the VOF also encompasses an intrinsic degree of freedom associated with parity (even or odd), corresponding to a pair of degenerate orthogonal modes. However, previous research has not delved into the simultaneous manipulation of both even and odd parities. In this study, we introduce and validate the previously unexplored parity Hall effect for vectorial modes using a metasurface design. Our focus lies on a cylindrical vector beam (CVB) as a representative case. Through the tailored metasurface, we effectively separate two degenerate CVBs with distinct parities in divergent directions, akin to the observed spin states split in the spin Hall effect. Additionally, we provide experimental evidence showcasing the capabilities of this effect in multi-order CVB demultiplexing and parity-demultiplexed CVB-encoded holography. This effect unveils promising opportunities for various applications, including optical communication and imaging.

19.
Exp Gerontol ; 187: 112374, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320734

RESUMEN

Ischemic stroke and vascular dementia, as common cerebrovascular diseases, with the former causing irreversible neurological damage and the latter causing cognitive and memory impairment, are closely related and have long received widespread attention. Currently, the potential causative genes of these two diseases have yet to be investigated, and effective early diagnostic tools for the diseases have not yet emerged. In this study, we screened new potential biomarkers and analyzed new therapeutic targets for both diseases from the perspective of immune infiltration. Two gene expression profiles on ischemic stroke and vascular dementia were obtained from the NCBI GEO database, and key genes were identified by LASSO regression and SVM-RFE algorithms, and key genes were analyzed by GO and KEGG enrichment. The CIBERSORT algorithm was applied to the gene expression profile species of the two diseases to quantify the 24 subpopulations of immune cells. Moreover, logistic regression modeling analysis was applied to illustrate the stability of the key genes in the diagnosis. Finally, the key genes were validated using RT-PCR assay. A total of 105 intersecting DEGs genes were obtained in the 2 sets of GEO datasets, and bioinformatics functional analysis of the intersecting DEGs genes showed that GO was mainly involved in the purine ribonucleoside triphosphate metabolic process,respiratory chain complex,DNA-binding transcription factor binding and active transmembrane transporter activity. KEGG is mainly involved in the Oxidative phosphorylation, cAMP signaling pathway. The LASSO regression algorithm and SVM-RFE algorithm finally obtained three genes, GAS2L1, ARHGEF40 and PFKFB3, and the logistic regression prediction model determined that the three genes, GAS2L1 (AUC: 0.882), ARHGEF40 (AUC: 0.867) and PFKFB3 (AUC: 0.869), had good diagnostic performance. Meanwhile, the two disease core genes and immune infiltration were closely related, GAS2L1 and PFKFB3 had the highest positive correlation with macrophage M1 (p < 0.001) and the highest negative correlation with mast cell activation (p = 0.0017); ARHGEF40 had the highest positive correlation with macrophage M1 and B cells naive (p < 0.001), the highest negative correlation with B cell memory highest correlation (p = 0.0047). RT-PCR results showed that the relative mRNA expression levels of GAS2L1, ARHGEF40, and PFKFB3 were significantly elevated in the populations of both disease groups (p < 0.05). Immune infiltration-based models can be used to predict the diagnosis of patients with ischemic stroke and vascular dementia and provide a new perspective on the early diagnosis and treatment of both diseases.


Asunto(s)
Demencia Vascular , Accidente Cerebrovascular Isquémico , Humanos , Demencia Vascular/diagnóstico , Demencia Vascular/genética , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/genética , Algoritmos , Biomarcadores , Biología Computacional
20.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770401

RESUMEN

Mid-infrared large field-of-view (FOV) imaging optics play a vital role in infrared imaging and detection. The metalens, which is composed of subwavelength-arrayed structures, provides a new possibility for the miniaturization of large FOV imaging systems. However, the inaccuracy during fabrication is the main obstacle to developing practical uses for metalenses. Here, we introduce the principle and method of designing a large FOV doublet metalens at the mid-infrared band. Then, the quantitative relationship between the fabrication error and the performance of the doublet metalens with a large FOV from four different fabrication errors is explored by using the finite-difference time-domain method. The simulation results show that the inclined sidewall error has the greatest impact on the focusing performance, and the interlayer alignment error deforms the focusing beam and affects the focusing performance, while the spacer thickness error has almost no impact on the performance. The contents discussed in this paper can help manufacturers determine the allowable processing error range of the large FOV doublet metalens and the priority level for optimizing the process, which is of significance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA