Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D792-D804, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35920330

RESUMEN

ABC portal (http://abc.sklehabc.com) is a database and web portal containing 198 single-cell transcriptomic datasets of development, differentiation and disorder of blood/immune cells. All the datasets were re-annotated with a manually curated and unified single-cell reference, especially for the haematopoietic stem and progenitor cells. ABC portal provides web-based interactive analysis modules, especially a comprehensive cell-cell communication analysis and disease-related gene signature analysis. Importantly, ABC portal allows customized sample selection based on a combination of several metadata for downstream analysis and comparison analysis across datasets. ABC portal also allows users to select multiple cell types for analysis in the modules. Together, ABC portal provides an interactive interface of single-cell data exploration and re-analysis with customized analysis modules for the researchers and clinicians, and will facilitate understanding of haematopoiesis and blood/immune disorders.


Asunto(s)
Células Sanguíneas , Computadores , Bases de Datos Factuales , Perfilación de la Expresión Génica , Transcriptoma
2.
Small ; 20(8): e2305925, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37821402

RESUMEN

Highly sensitive self-powered stretchable electronic skins with the capability of detecting broad-range dynamic and static pressures are urgently needed with the increasing demands for miniaturized wearable electronics, robots, artificial intelligence, etc. However, it remains a great challenge to achieve this kind of electronic skins. Here, unprecedented battery-type all-in-one self-powered stretchable electronic skins with a novel structure composed of pressure-sensitive elastic vanadium pentoxide (V2 O5 ) nanowire-based porous cathode, elastic porous polyurethane /carbon nanotube/polypyrrole anode, and polyacrylamide ionic gel electrolyte are reported. A new battery-type self-powered pressure sensing mechanism involving the output current variation caused by the resistance variation of the electrodes and electrolytes under external pressure is revealed. The battery-type self-powered electronic skins combining high sensitivity, broad response range (1.8 Pa-1.5 MPa), high fatigue resistance, and excellent stability against stretching (50% tensile strain) are achieved for the first time. This work provides a new and versatile battery-type sensing strategy for the design of next-generation all-in-one self-powered miniaturized sensors and electronic skins.

3.
Small ; 20(24): e2307602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150669

RESUMEN

Transparent aerogels are ideal candidates for thermally insulating windows, solar thermal receivers, electronics, etc. However, they are usually prepared via energy-consuming supercritical drying and show brittleness and low tensile strength, significantly restricting their practical applications. It remains a great challenge to prepare transparent aerogels with high tensile strength and toughness. Herein, biomimetic transparent tough cellulose nanofiber-based nanocomposite aerogels with a layered nanofibrous structure are achieved by vacuum-assisted self-assembly combined with ambient pressure drying. The nacre-like layered homogeneous nanoporous structures can reduce light scattering and effectively transfer stress and prevent stress concentration under external forces. The aerogels exhibit an attractive combination of excellent transparency and hydrophobicity, high compressive and tensile strengths, high toughness, excellent machinability, thermal superinsulation, and wide working temperature range (-196 to 230 °C). It is demonstrated that they can be used for superinsulating windows of buildings and high-efficient thermal management for electronics and human bodies. In addition, a prototype of transparent flexible aerogel-based triboelectric nanogenerator is developed. This work provides a promising pathway toward transparent tough porous materials for energy saving/harvesting, thermal management, electronics, sensors, etc.

4.
Respir Res ; 25(1): 108, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419044

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate, and there is an urgent need for more effective therapies. Fibroblast growth factor 18 (FGF18) has potent anti-inflammatory properties and therefore has become a focus of research for the treatment of lung injury. However, the precise role of FGF18 in the pathological process of ALI and the underlying mechanisms have not been fully elucidated. METHODS: A mouse model of ALI and human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS) was established in vivo and in vitro. AAV-FGF18 and FGF18 proteins were used in C57BL/6J mice and HUVEC, respectively. Vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and p65 protein levels were determined by western blotting or immunofluorescent staining. Afterward, related inhibitors were used to explore the potential mechanism by which FGF18 relieves inflammation. RESULTS: In this study, we found that FGF18 was significantly upregulated in LPS-induced ALI mouse lung tissues and LPS-stimulated HUVECs. Furthermore, our studies demonstrated that overexpressing FGF18 in the lung or HUVEC could significantly alleviate LPS-induced lung injury and inhibit vascular leakage. CONCLUSIONS: Mechanically, FGF18 treatment dramatically inhibited the NF-κB signaling pathway both in vivo and in vitro. In conclusion, these results indicate that FGF18 attenuates lung injury, at least partially, via the NF-κB signaling pathway and therefore may be a potential therapeutic target for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Factores de Crecimiento de Fibroblastos , Sepsis , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sepsis/metabolismo
5.
Small ; 19(12): e2206233, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592416

RESUMEN

Albeit considerable attention to the fast-developing organic thermoelectric (OTE) materials due to their flexibility and non-toxic features, it is still challenging to design an OTE polymer with superior thermoelectric properties. In this work, two "isomorphic" donor-acceptor (D-A) conjugated polymers are studied as the semiconductor in OTE devices, revealing for the first time the internal mechanism of regioregularity on thermoelectric performances in D-A type polymers. A higher molecular structure regularity can lead to higher crystalline order and mobility, higher doping efficiency, order of energy state, and thermoelectric (TE) performance. As a result, the regioregular P2F exhibits a maximum power factor (PF) of up to 113.27 µW m-1  K-2 , more than three times that of the regiorandom PRF (35.35 µW m-1  K-2 ). However, the regular backbone also implies lower miscibility with a dopant, negatively affecting TE performance. Therefore, the trade-off between doping efficiency and miscibility plays a vital role in OTE materials, and this work sheds light on the molecular design strategy of OTE polymers with state-of-the-art performances.

6.
Langmuir ; 39(50): 18558-18572, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38049106

RESUMEN

The present study attempts to explore the direct recyclability of glyceroborate from medicine pharmaceutical production wastewater into an aqueous lubricant instead of conventional waste processing methods from the tribological view. In order to determine the tribological feasibility, the physicochemical properties of crude pharmaceutical wastewater are investigated and compared with those of pure glycerol to access their potential lubrication properties. The results demonstrated that the crude pharmaceutical wastewater has better friction-reducing and antiwear properties under the same working conditions. Besides outstanding lubricating properties, the friction-induced formation of borate tribo-film and intermediate FeOOH compound favors lowering of the shear stress between the rubbing surfaces. This finding better provides an alternative to transform glyceroborate from medicine pharmaceutical production wastewater after simple distillation processing to a potential aqueous lubricant.

7.
Handb Exp Pharmacol ; 279: 83-103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36764970

RESUMEN

CaV1.2 calcium channel is the primary conduit for Ca2+ influx into cardiac and smooth muscles that underscores its importance in the pathogenesis of hypertension, atherosclerosis, myocardial infarction, and heart failure. But, a few controversies still remain. Therefore, exploring new ways to modulate CaV1.2 channel activity will augment the arsenal of CaV1.2 channel-based therapeutics for treatment of cardiovascular diseases. Here, we will mainly introduce a couple of emerging CaV1.2 channel interacting proteins, such as Galectin-1 and Cereblon, and discuss their roles in hypertension and heart failure through fine-tuning CaV1.2 channel activity. Of current interest, we will also evaluate the implication of the role of CaV1.2 channel in SARS-CoV-2 infection and the potential treatments of COVID-19-related cardiovascular symptoms.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión , Humanos , SARS-CoV-2/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Procesamiento Proteico-Postraduccional , Hipertensión/metabolismo , Calcio/metabolismo
8.
Angew Chem Int Ed Engl ; 62(1): e202213952, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346155

RESUMEN

Broad-range-response pressure-sensitive wearable electronics are urgently needed but their preparation remains a challenge. Herein, we report unprecedented bioinspired wearable electronics based on stretchable and superelastic reduced graphene oxide/polyurethane nanocomposite aerogels with gradient porous structures by a sol-gel/hot pressing/freeze casting/ambient pressure drying strategy. The gradient structure with a hot-pressed layer promotes strain transfer and resistance variation under high pressures, leading to an ultrabroad detection range of 1 Pa-12.6 MPa, one of the broadest ranges ever reported. They can withstand 10 000 compression cycles under 1 MPa, which can't be achieved by traditional flexible pressure sensors. They can be applied for broad-range-response electronic skins and monitoring various physical signals/motions and ultrahigh pressures of automobile tires. Moreover, the gradient aerogels can be used as high-efficient gradient separators for water purification.


Asunto(s)
Nanocompuestos , Dispositivos Electrónicos Vestibles , Presión , Electrónica , Poliuretanos
9.
Pflugers Arch ; 472(6): 653-667, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32435990

RESUMEN

Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel-related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.


Asunto(s)
Canales de Calcio Tipo L/genética , Sistema Cardiovascular/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología
10.
Proc Natl Acad Sci U S A ; 114(21): E4288-E4295, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28490495

RESUMEN

Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure-function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential -10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33-/--null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33-/- mice from ß-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear.


Asunto(s)
Potenciales de Acción/genética , Canales de Calcio Tipo L/genética , Síndrome de QT Prolongado/genética , Taquicardia/genética , Complejos Prematuros Ventriculares/genética , Potenciales de Acción/fisiología , Empalme Alternativo/genética , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Colforsina/farmacología , Fenómenos Electrofisiológicos/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Isoproterenol/farmacología , Síndrome de QT Prolongado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Nifedipino/farmacología , Ratas , Eliminación de Secuencia/genética , Taquicardia/patología , Complejos Prematuros Ventriculares/patología
11.
Circulation ; 138(14): 1431-1445, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-29650545

RESUMEN

BACKGROUND: L-type CaV1.2 channels play crucial roles in the regulation of blood pressure. Galectin-1 (Gal-1) has been reported to bind to the I-II loop of CaV1.2 channels to reduce their current density. However, the mechanistic understanding for the downregulation of CaV1.2 channels by Gal-1 and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. METHODS: In vitro experiments involving coimmunoprecipitation, Western blot, patch-clamp recordings, immunohistochemistry, and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 downregulates CaV1.2 channel in transfected, human embryonic kidney 293 cells, smooth muscle cells, arteries from Lgasl1-/- mice, rat, and human patients. In vivo experiments involving the delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting CaV1.2-Gal-1 interaction on blood pressure monitored by tail-cuff or telemetry methods. RESULTS: Our study reveals that Gal-1 is a key regulator for proteasomal degradation of CaV1.2 channels. Gal-1 competed allosterically with the CaVß subunit for binding to the I-II loop of the CaV1.2 channel. This competitive disruption of CaVß binding led to CaV1.2 degradation by exposing the channels to polyubiquitination. It is notable that we demonstrated that the inverse relationship of reduced Gal-1 and increased CaV1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice because of the upregulated CaV1.2 protein level in arteries. To directly regulate blood pressure by targeting the CaV1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1 by a miniosmotic pump, and this specific disruption of CaV1.2-Gal-1 coupling increased smooth muscle CaV1.2 currents, induced larger arterial contraction, and caused hypertension in rats. In contrasting experiments, overexpression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. CONCLUSIONS: We have defined molecularly that Gal-1 promotes CaV1.2 degradation by replacing CaVß and thereby exposing specific lysines for polyubiquitination and by masking I-II loop endoplasmic reticulum export signals. This mechanistic understanding provided the basis for targeting CaV1.2-Gal-1 interaction to demonstrate clearly the modulatory role that Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.


Asunto(s)
Antihipertensivos/farmacología , Presión Arterial/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Galectina 1/metabolismo , Terapia Genética/métodos , Hipertensión/terapia , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Animales , Canales de Calcio Tipo L/genética , Estudios de Casos y Controles , Dependovirus , Modelos Animales de Enfermedad , Galectina 1/genética , Vectores Genéticos , Células HEK293 , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Potenciales de la Membrana , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Parvovirinae/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Ratas Endogámicas SHR , Ratas Endogámicas WKY
12.
Mol Biol Evol ; 35(5): 1063-1077, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474580

RESUMEN

MicroRNA (miRNA) sponges are vital components of posttranscriptional gene regulation. Yet, only a limited number of miRNA sponges have been identified. Here, we show that the recently evolved noncoding tumor suppressor transcript, antisense RNA to TP73 gene (TP73-AS1), functions as a natural sponge of human-specific miRNA miR-941. We find unusually nine high-affinity miR-941 binding sites clustering within 1 kb region on TP73-AS1, which forms miR-941 sponge region. This sponge region displays increased sequence constraint only in humans, and its formation can be traced to the tandem expansion of a 71-nt-long sequence containing a single miR-941 binding site in old world monkeys. We further confirm TP73-AS1 functions as an efficient miR-941 sponge based on massive transcriptome data analyses, wound-healing assay, and Argonaute protein immunoprecipitation experiments conducted in cell lines. The expression of miR-941 and its sponge correlate inversely across multiple healthy and cancerous tissues, with miR-941 being highly expressed in tumors and preferentially repressing tumor suppressors. Thus, the TP73-AS1 and miR-941 duo represents an unusual case of the extremely rapid evolution of noncoding regulators controlling cell migration, proliferation, and tumorigenesis.


Asunto(s)
Evolución Molecular , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteína Tumoral p73/metabolismo , Regulación de la Expresión Génica , Humanos
13.
Nucleic Acids Res ; 45(D1): D135-D138, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27543076

RESUMEN

Increasing evidence has revealed that RNA subcellular localization is a very important feature for deeply understanding RNA's biological functions after being transported into intra- or extra-cellular regions. RNALocate is a web-accessible database that aims to provide a high-quality RNA subcellular localization resource and facilitate future researches on RNA function or structure. The current version of RNALocate documents more than 37 700 manually curated RNA subcellular localization entries with experimental evidence, involving more than 21 800 RNAs with 42 subcellular localizations in 65 species, mainly including Homo sapiens, Mus musculus and Saccharomyces cerevisiae etc. Besides, RNA homology, sequence and interaction data have also been integrated into RNALocate. Users can access these data through online search, browse, blast and visualization tools. In conclusion, RNALocate will be of help in elucidating the entirety of RNA subcellular localization, and developing new prediction methods. The database is available at http://www.rna-society.org/rnalocate/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Transporte de ARN , ARN , Animales , Humanos , Espacio Intracelular , Navegador Web
14.
Biophys J ; 114(9): 2095-2106, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742403

RESUMEN

The CaV1.2 L-type calcium channel is a key conduit for Ca2+ influx to initiate excitation-contraction coupling for contraction of the heart and vasoconstriction of the arteries and for altering membrane excitability in neurons. Its α1C pore-forming subunit is known to undergo extensive alternative splicing to produce many CaV1.2 isoforms that differ in their electrophysiological and pharmacological properties. Here, we examined the structure-function relationship of human CaV1.2 with respect to the inclusion or exclusion of mutually exclusive exons of the N-terminus exons 1/1a and IS6 segment exons 8/8a. These exons showed tissue selectivity in their expression patterns: heart variant 1a/8a, one smooth-muscle variant 1/8, and a brain isoform 1/8a. Overall, the 1/8a, when coexpressed with CaVß2a, displayed a significant and distinct shift in voltage-dependent activation and inactivation and inactivation kinetics as compared to the other three splice variants. Further analysis showed a clear additive effect of the hyperpolarization shift in V1/2inact of CaV1.2 channels containing exon 1 in combination with 8a. However, this additive effect was less distinct for V1/2act. However, the measured effects were ß-subunit-dependent when comparing CaVß2a with CaVß3 coexpression. Notably, calcium-dependent inactivation mediated by local Ca2+-sensing via the N-lobe of calmodulin was significantly enhanced in exon-1-containing CaV1.2 as compared to exon-1a-containing CaV1.2 channels. At the cellular level, the current densities of the 1/8a or 1/8 variants were significantly larger than the 1a/8a and 1a/8 variants when coexpressed either with CaVß2a or CaVß3 subunit. This finding correlated well with a higher channel surface expression for the exon 1-CaV1.2 isoform that we quantified by protein surface-expression levels or by gating currents. Our data also provided a deeper molecular understanding of the altered biophysical properties of alternatively spliced human CaV1.2 channels by directly comparing unitary single-channel events with macroscopic whole-cell currents.


Asunto(s)
Empalme Alternativo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Regulación de la Expresión Génica , Canales de Calcio Tipo L/metabolismo , Exones/genética , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Cinética , Dominios Proteicos , Propiedades de Superficie
15.
Appl Opt ; 57(35): 10342-10347, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645242

RESUMEN

Optical lenses with diameter in the millimeter range have found important commercial use in smartphone cameras. Although these lenses are typically made by molding, recent demonstration of fast-cured polymer droplets by inkjet printing has gained interest for cost-effective smartphone microscopy. In this technique, the surface of a fast-cured polydimethylsiloxane droplet obtains dynamic equilibrium via the interplay of surface tension, gravity, thermalization, and a steep viscosity hike. The nature of surface formation involves multiple physical and chemical domains, which represent significant challenges in modeling with the Young-Laplace theory, assuming constant surface tension and viscosity. To overcome these challenges, we introduce the concept of effective surface tension, which allows fast-cured polymer droplets to be modeled as normal liquid droplets with constant viscosity.

16.
Fish Shellfish Immunol ; 67: 554-560, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28630014

RESUMEN

Recently, molecular hydrogen has been reported to have a suppressive effect on inflammation in human and rodent models. The aim of this study was to evaluate the preventive effects of hydrogen-rich water (HRW) on zebrafish challenged by A. hydrophila. We have found an increased survival rate of bacteria-challenged zebrafish subjected to the HRW immersion treatment. Furthermore, we have revealed that HRW was able to block multiplication of A. hydrophila in zebrafish. In addition, treatment of zebrafish infected by A. hydrophila with effective concentrations of HRW strongly affected the expression of genes mediating pro-inflammatory and anti-inflammatory cytokines. There were down-regulation of selected pro-inflammatory immune response genes (IL-1ß, IL-6, and NF-κB), and up-regulation of the anti-inflammatory cytokine gene (IL-10) in the spleen, kidney, and liver. This study is the first one to investigate the effects of HRW on fish infected with bacteria, and might shed new light on hydrogen's antimicrobial effects and further application in aquaculture fish species.


Asunto(s)
Aeromonas hydrophila/fisiología , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Hidrógeno/farmacología , Inmunidad Innata/efectos de los fármacos , Longevidad , Pez Cebra/fisiología , Animales , Acuicultura , Enfermedades de los Peces/mortalidad , Proteínas de Peces/genética , Regulación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/mortalidad , Inmersión , Longevidad/efectos de los fármacos , Sustancias Protectoras/farmacología , Pez Cebra/genética , Pez Cebra/inmunología
17.
Appl Opt ; 56(26): 7346-7350, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-29048055

RESUMEN

Small, self-adhesive, inkjet-printed elastomer lenses have enabled smartphone cameras to image and resolve microscopic objects. However, the performance of different lenses within a batch is affected by hard-to-control environmental variables. We present a cost-effective platform to perform automated batch characterization of 300 lens units simultaneously for quality inspection. The system was designed and configured with LEGO bricks, 3D printed parts, and a digital camera. The scheme presented here may become the basis of a high-throughput, in-line inspection tool for quality control purposes and can also be employed for optimization of the manufacturing process.

18.
J Biol Chem ; 290(14): 9262-72, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25694430

RESUMEN

L-type Cav1.2 Ca(2+) channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca(2+) channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavß subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca(2+) ions at a much lower level.


Asunto(s)
Empalme Alternativo , Canales de Calcio Tipo L/genética , Miocardio/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Secuencia de Bases , Canales de Calcio Tipo L/química , ADN , Cartilla de ADN , Exones , Masculino , Datos de Secuencia Molecular , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Pharmacol Res ; 102: 286-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26520392

RESUMEN

Peripheral painful neuropathy is one of the most common complications in diabetes and necessitates improved treatment. Fisetin, a naturally occurring flavonoid, has been reported to exert antidepressant-like effect in previous studies. As antidepressant drugs are employed clinically to treat neuropathic pain, this work aimed to investigate whether fisetin possess beneficial effect on diabetic neuropathic pain and explore the mechanism(s). We subjected mice to diabetes by a single intraperitoneal (i.p.) injection of streptozotocin (200mg/kg), and von Frey test or Hargreaves test was used to assess mechanical allodynia or thermal hyperalgesia, respectively. Chronic treatment of diabetic mice with fisetin not only ameliorated the established symptoms of thermal hyperalgesia and mechanical allodynia, but also arrested the development of neuropathic pain when given at low doses. Although chronic fisetin administration did not impact on the symptom of hyperglycemia in diabetic mice, it reduced exacerbated oxidative stress in tissues of spinal cord, dorsal root ganglion (DRG) and sciatic verve. Furthermore, the analgesic actions of fisetin were abolished by repetitive co-treatment with the reactive oxygen species (ROS) donor tert-butyl hydroperoxide (t-BOOH), but potentiated by the ROS scavenger phenyl-N-tert-butylnitrone (PBN). Finally, acute blockade of spinal GABAA receptors by bicuculline totally counteracted such fisetin analgesia. These findings indicate that chronic fisetin treatment can delay or correct neuropathic hyperalgesia and allodynia in mice with type 1 diabetes. Mechanistically, the present fisetin analgesia may be associated with its antioxidant activity, and spinal GABAA receptors are likely rendered as downstream targets.


Asunto(s)
Analgésicos/farmacología , Antioxidantes/metabolismo , Neuropatías Diabéticas/metabolismo , Flavonoides/farmacología , Neuralgia/tratamiento farmacológico , Receptores de GABA-A/metabolismo , Animales , Bicuculina/farmacología , Óxidos N-Cíclicos/farmacología , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Flavonoles , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Estreptozocina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA