RESUMEN
Diazinon, an organophosphorus insecticide, is predominantly removed through photodegradation and biodegradation in the environment. However, photodegradation can generate diazoxon, a highly toxic oxidation byproduct, while biodegradation is hard to complete mineralize diazinon, showing limitations in both methods. In this study, we provided an efficient strategy for the complete and harmless removal of diazinon by synergistically employing biodegradation and photodegradation. The diazinon-degrading strain X1 was capable of completely degrading 200⯵M of diazinon into 2-isopropyl-6-methyl-4-pyrimidinol (IMP) within 6â¯h without producing the highly toxic diazoxon. IMP was the only intermediate metabolite in biodegradation process, which cannot be further degraded by strain X1. Through RT-qPCR and prokaryotic expression analyses, the hydrolase OpdB was pinpointed as the key enzyme for diazinon degradation in strain X1. Photodegradation was further used to degrade IMP and a pyridazine ring-opening product of IMP was identified via high resolution mass spectrometry. The acute toxicity of this product to aquatic organisms were 123 times and 6630 times lower than that of diazinon and IMP, respectively. The stepwise application of biodegradation and photodegradation was proved to be a successful approach for the remediation of diazinon and its metabolite IMP. This integrated method ensures the harmless and complete elimination of diazinon and IMP within only 6â¯h. The research provides a theoretical basis for the efficient and harmless remediation of organophosphorus insecticide residuals in the environment.
Asunto(s)
Biodegradación Ambiental , Diazinón , Insecticidas , Fotólisis , Diazinón/metabolismo , Diazinón/toxicidad , Diazinón/química , Insecticidas/metabolismo , Insecticidas/toxicidad , Insecticidas/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , AnimalesRESUMEN
A novel solid-phase microextraction device coated with an efficient and cheap thin film of polyurethane was developed for trace determination of 13 widely used pesticides in fruit and tea beverages. A round-shaped polyurethane film covering the bottom of a glass vial was fabricated as the sorbent to exhibit a superior capacity for preconcentrating target compounds and reducing matrix interferences. After optimization of the key parameters including the film type, extraction time, solution pH, ionic strength, desorption solvent, and conditions, this device allowed an efficient adsorption-desorption cycle for the pesticides accomplished in one vial. Coupled with gas chromatography-electron capture detection, the polyurethane-coated thin film microextraction method was successfully established and applied for the analysis of real fruit and tea drinks, showing low limits of detection (0.001-0.015 µg/L), wide linear ranges (1.0-500.0 µg/L, r2 > 0.9931), good relative recoveries (77.2%-106.3%) and negligible matrix effects (86.1%-107.5%) for the target pesticides. The proposed approach revealed strong potential of extending its application by flexibly modifying the type or size of the coating film. This study provides insights into the enrichment of contaminants from complex samples using inexpensive and reusable microextraction devices that can limit the environmental and health impact of the sample preparation protocol.
Asunto(s)
Plaguicidas , Plaguicidas/análisis , Microextracción en Fase Sólida/métodos , Poliuretanos/análisis , Frutas/química , Bebidas/análisis , Té/químicaRESUMEN
Chiral pesticides may exhibit enantioselectivity in terms of bioconcentration, environmental fate, and reproductive toxicity. Here, chiral prothioconazole and its metabolites were selected to thoroughly investigate their enantioselective toxicity and mechanisms at the molecular and cellular levels. Multispectral techniques revealed that the interaction between chiral PTC/PTCD and lysozyme resulted in the formation of a complex, leading to a change in the conformation of lysozyme. Meanwhile, the effect of different conformations of PTC/PTCD on the conformation of lysozyme differed, and its metabolites were able to exert a greater effect on lysozyme compared to prothioconazole. Moreover, the S-configuration of PTCD interacted most strongly with lysozyme. This conclusion was further verified by DFT calculations and molecular docking as well. Furthermore, the oxidative stress indicators within HepG2 cells were also affected by chiral prothioconazole and its metabolites. Specifically, S-PTCD induced more substantial perturbation of the normal oxidative stress processes in HepG2 cells, and the magnitude of the perturbation varied significantly among different configurations (P > 0.05). Overall, chiral prothioconazole and its metabolites exhibit enantioselective effects on lysozyme conformation and oxidative stress processes in HepG2 cells. This work provides a scientific basis for a more comprehensive risk assessment of the environmental behaviors and effects caused by chiral pesticides, as well as for the screening of highly efficient and less biotoxic enantiomeric monomers.
Asunto(s)
Fungicidas Industriales , Plaguicidas , Humanos , Fungicidas Industriales/farmacología , Estereoisomerismo , Simulación del Acoplamiento Molecular , Células Hep G2 , Muramidasa/metabolismo , Estrés OxidativoRESUMEN
Cupriavidus nantongensis X1T is a type strain of the genus Cupriavidus, that can degrade eight kinds of organophosphorus insecticides (OPs). Conventional genetic manipulations in Cupriavidus species are time-consuming, difficult, and hard to control. The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) system has emerged as a powerful tool for genome editing applied in prokaryotes and eukaryotes due to its simplicity, efficiency, and accuracy. Here, we combined CRISPR/Cas9 with the Red system to perform seamless genetic manipulation in the X1T strain. Two plasmids, pACasN and pDCRH were constructed. The pACasN plasmid contained Cas9 nuclease and Red recombinase, and the pDCRH plasmid contained the dual single-guide RNA (sgRNA) of organophosphorus hydrolase (OpdB) in the X1T strain. For gene editing, two plasmids were transferred to the X1T strain and a mutant strain in which genetic recombination had taken place, resulting in the targeted deletion of opdB. The incidence of homologous recombination was over 30%. Biodegradation experiments suggested that the opdB gene was responsible for the catabolism of organophosphorus insecticides. This study was the first to use the CRISPR/Cas9 system for gene targeting in the genus Cupriavidus, and it furthered our understanding of the process of degradation of organophosphorus insecticides in the X1T strain.
Asunto(s)
Cupriavidus , Insecticidas , Insecticidas/metabolismo , Sistemas CRISPR-Cas/genética , Compuestos Organofosforados/metabolismo , Cupriavidus/genética , Cupriavidus/metabolismo , Edición Génica/métodosRESUMEN
Antibiotic resistance genes (ARGs) are important biological contamination factors in soil systems, posing direct or indirect threats to soil health, food safety and human health. The ubiquitous pollution of ARGs is usually implicated with the application of organic manures in agricultural soil ecosystem. However, little is known about the transmission and fate of ARGs after manure input concerning different soils. Herein, the transmission potential and temporal dynamics of manure-associated ARGs was characterized with three different agricultural soils collected from Jiangxi (JX), Zhejiang (ZJ), and Jilin (JL), respectively. The results show that manure input did not affect the total abundance of ARGs in the receiving soils, but remarkedly alter the compositions of ARGs in soils. The manure-associated ARGs were significantly enriched in the manure-amended soils, including genes conferring resistance to sulfonamide, aminoglycoside, tetracycline, chloramphenicol, and trimethoprim with the fold of 1.97 - 27.86. Variance partitioning analysis showed that the major variances of ARG community was explained by mobile genetic elements and bacterial profile (> 76%) but not the concentrations of heavy metals and antibiotics. Furthermore, 31, 37, and 38 ARG subtypes were identified as the potential extrinsic ARGs derived from manures in the JX, ZJ, and JL soils, respectively, including 13 shared ARG subtypes. It was also found that the manure-associated ARGs (aadA, sul1, sul2, tetC, and tetG) declined with the incubation time in the JX and ZJ soils, whereas they firstly decreased and then increased in the JL soil. The abundance of these five ARGs in the JL soil was significantly higher than that in the JX and ZJ soils. Collectively, this finding revealed that soil type was responsible for the transmission and fate of manure-associated ARGs in agroecosystem.
Asunto(s)
Estiércol , Suelo , Humanos , Estiércol/microbiología , Antibacterianos/farmacología , Ecosistema , Microbiología del Suelo , Genes Bacterianos , Farmacorresistencia Microbiana/genéticaRESUMEN
Fluorescence-labeling technology has been widely used for rapid detection of pesticides in agricultural production. However, there are few studies on the use of this technology to investigate pesticide uptake and transport in plants with fluorescent nanoparticle formulations. Here, we investigated uptake, transport, accumulation and metabolism of imidacloprid loaded in fluorescent mesoporous SiO2 nanoparticles (Im@FL-MSNs) in tomato plants, and compared the results with the pesticide application in granular formulation. The results revealed that Im@FL-MSNs applied via root uptake and foliar spray both could effectively transport in tomato plants and carry the imidacloprid to plant tissues. Neither Im@FL-MSNs nor imidacloprid was detected inside of tomato fruits from root uptake or foliar spray applications. Compared with the foliar application of granular formulation, imidacloprid in Im@FL-MSNs demonstrated a higher concentration in leaves (1.14 ± 0.07 mg/kg > 1.08 ± 0.04 mg/kg, 1.13 ± 0.09 mg/kg > 1.11 ± 0.02 mg/kg), longer half-life (0.84 d < 1.31 d, 0.90 d < 1.36 d) and small numbers of metabolites formed. These results suggest that mesoporous silica nanoparticles could serve as an effective and efficient pesticide carrier for achieving the high use efficiency in plant protection. The information is also helpful to guide the pesticide applications and assess the risks associated with environmental quality and dietary consumption of vegetables.
Asunto(s)
Nanopartículas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Nanopartículas/metabolismo , Neonicotinoides , Nitrocompuestos , Dióxido de SilicioRESUMEN
Nanotechnology has been widely used in the field of pesticides. Integration of nano-pesticides and carbon dot fluorescence can fully utilize the potential for high admission of pesticides on leaves and convenience observation of its distribution and transport in the tissues. In the present study, a fluorescent mesoporous nanosilica with double hollow shells for loading imidacloprid (Im@FL-MSNs) was designed and synthesized. The physical and chemical properties of the imidacloprid nanocarriers were characterized by transmission electron microscopy (TEM), FT-IR spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption. When the mass ratio of FL MSNs to imidacloprid is 6:5, Im@FL-MSNs exhibits good fluorescence properties, high loading efficiency (â¼30%), great slow-release performance as well as pH controllability. Besides, Im@FL-MSNs can improve the ability of imidacloprid to adhere on the leaf surface of bok choy (Initial contact angled is greater than 80°ï¼. Importantly, Im@FL-MSNs did not reduce the biological activity of imidacloprid (LC50 (95% CI) = 1.43 mg/L). It was able to visually study the absorption and distribution of imidacloprid in bok choy plants, and provide theoretical and technical guidance for pesticide reduction.
Asunto(s)
Nanopartículas , Plaguicidas , Dióxido de Silicio/química , Nanopartículas/química , Preparaciones de Acción Retardada , Espectroscopía Infrarroja por Transformada de Fourier , Plaguicidas/química , Concentración de Iones de HidrógenoRESUMEN
Sulfonamide antibiotics (SAs) are widely used in medicine, animal husbandry and aquaculture, and excessive intake of SAs may pose potential toxicity to organisms. The toxicological mechanisms of two classical SAs, sulfamerazine (SMR) and sulfamethoxazole (SMT), were investigated by molecular docking, DFT and multi-spectroscopic techniques using HSA and BSA as model proteins. The quenching of HSA/BSA endogenous fluorescence by SMR was higher than that by SMT due to the stronger binding effect of the pyrimidine ring on HSA/BSA compared to the oxazole ring, and that result was consistent with that predicted by DFT calculations. Thermodynamic parameters show that the binding of SAs to HSA/BSA is an exothermic process that proceeds spontaneously (ΔG < 0). Marker competition experiments illustrate that the binding site of SMR/SMT on serum albumin is located in subdomain IIIA. The combination of SAs and HSA/BSA is mainly realized by hydrogen bond and hydrophobic interaction, and the concept is also supported by molecular modeling. The reduced α-helix content of HSA/BSA induced by SMR/SMT indicates a greater stretching of the protein α-helix structure of the SMR/SMT-HSA/BSA. The results could provide useful toxicological information on the hazards of SAs in response to growing concern that SAs may pose a toxic threat to organisms.
Asunto(s)
Antibacterianos , Sulfonamidas , Animales , Antibacterianos/toxicidad , Sitios de Unión , Dicroismo Circular , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia , Sulfanilamida , Sulfonamidas/toxicidad , TermodinámicaRESUMEN
The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11-0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49-0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5-2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (-7.56 kcal mol-1) and R-ethiprole (-6.45 kcal mol-1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health.
Asunto(s)
Insecticidas , Animales , Citocromo P-450 CYP2E1 , Insecticidas/toxicidad , Hígado , Simulación del Acoplamiento Molecular , Ratas , EstereoisomerismoRESUMEN
A sensitive and rapid method named dispersive solid-liquid microextraction combining in situ acid-base reaction-based effervescence and solidification of a floating organic droplet was developed for the simultaneous determination of eight neonicotinoid insecticides and two metabolites in rice by ultra-performance liquid chromatography-tandem mass spectrometry. The samples were extracted with sodium citrate monobasic-modified acetonitrile by vortexing and purified by primary secondary amine, and then a mixture of 1-undecanol and sodium carbonate aqueous solution was rapidly injected. An acid-base reaction and carbon dioxide bubbles were generated in situ, which promoted the dispersion of 1-undecanol droplets and subsequent transfer of the analytes from the acidified acetonitrile extract to 1-undecanol. The 1-undecanol phase was easily retrieved by centrifugation and solidification in an ice bath. This novel dispersive solid-liquid microextraction fully utilized the advantages of the effervescent reaction and floating droplet solidification, which was carried out in a tube and did not require stepwise analysis for a solid matrix. Under the optimized conditions, the average recoveries of the analytes ranged from 77.8 to 97.1% with relative standard deviations less than 7.3. The limits of detection varied between 0.01 and 0.1 µg kg-1, and enrichment factors were 42-55. The proposed method provides a quantitative, sensitive, and convenient analytical tool applicable for routine monitoring of neonicotinoids in rice. Graphical abstract á .
Asunto(s)
Insecticidas/química , Microextracción en Fase Líquida/métodos , Neonicotinoides/química , Oryza/química , Microextracción en Fase Sólida/métodos , Análisis de los Alimentos , Contaminación de AlimentosRESUMEN
A novel dispersive liquid-liquid microextraction that combines self-induced acid-base effervescent reaction and manual shaking, coupled with ultra high performance liquid chromatography with tandem mass spectrometry was developed for simultaneous determination of ten neonicotinoid insecticides and metabolites in orange juice. An innovative aspect of this method was the utilization of the acidity of the juice for a self-reaction between acidic components contained in the juice sample and added sodium carbonate which generated carbon dioxide bubbles in situ, accelerating the analytes transfer to the extractant of 1-undecanol. The total acid content of juice sample was measured to produce the maximum amount of bubbles with minimum usage of carbonate. Manual shaking was subsequently adopted and was proven to enhance the extraction efficiency. The factors affecting the performance, including the type and the amount of the carbon dioxide source and extractant, and ionic strength were optimized. Compared with conventional methods, this approach exhibited low limits of detection (0.001-0.1 µg/L), good recoveries (86.2-103.6%), high enrichment factors (25-50), and negligible matrix effects (-12.3-13.7%). The proposed method was demonstrated to provide a rapid, practical, and environmentally friendly procedure due to no acid reagent, toxic solvent, or external energy requirement, giving rise to potential application on other high acid-content matrices.
Asunto(s)
Jugos de Frutas y Vegetales/análisis , Insecticidas/análisis , Microextracción en Fase Líquida , Neonicotinoides/análisis , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Insecticidas/metabolismo , Neonicotinoides/metabolismoRESUMEN
This work introduces polyurethane (PU) as an efficient and economic sorbent for thin film solid phase microextraction of pyrethroid insecticides, specifically of bifenthrin, fenpropathrin, lambda-cyhalothrin, permethrin, cypermethrin, flucythrinate, fenvalerate and deltamethrin. The PU film is immersed into chrysanthemum tea under ultrasonication for the adsorption of the analytes, and the analytes are desorbed by a mixture of hexane and ethyl acetate and then quantified by gas chromatography with electron capture detection. The film type, adsorption temperature, extraction time, sample condition, and desorption procedure were optimized. The adsorption capacity and robustness of the PU film is found to be excellent for analysis of pyrethroids in chrysanthemum tea. The limits of detection and method limits of detection range from 0.05-0.5 µg L-1 and 0.0003-0.003 µg L-1, respectively. The relative recoveries from spiked samples are between 84.5 and 104.1%, and enrichment factors up to 188. The method was validated through blind split analyses of chrysanthemum tea infusion and ready-to-drink samples with liquid-liquid extraction. Good agreement between the two approaches shows the method to have an accuracy that is similar to that of the conventional technique. Compared with other reported approaches, the PU-based method exhibites a higher sensitivity, easier operation, lower costs and less matrix effects. Graphical abstract Schematic representation of the use of a polyurethane film as an efficient and economic sorbent for the microextraction of 8 pyrethroids by gas chromatography. This method exhibites excellent performance of accuracy, sensitivity, and robustness, demonstrating its potential of application in the analysis of complex matrix.
RESUMEN
A Gram-stain-positive, rod-shaped, non-motile bacterial strain, designated JW-1T, was isolated from activated sludge collected from the outlet of an aeration tank in a prometryn-manufacturing plant, located in Binzhou City, Shandong province, PR China. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain JW-1T belongs to the genus Leucobacter and its closest neighbours are 'Leucobacter kyeonggiensis' F3-P9 (98.95â% similarity), Leucobacter celer subsp. astrifaciens CBX151T (98.62â%), Leucobacter celer subsp. celer NAL101T (98.53â%), Leucobacter chromiiresistens JG31T (97.86â%) and Leucobacter chironomi DSM 19883T (97.37â%). DNA-DNA hybridization values with the above strains were <55â%. The DNA G+C content of strain JW-1T was 72.6 mol%. The major fatty acids of strain JW-1T were iso-C16â:â0, anteiso-C15â:â0, anteiso-C17â:â0 and iso-C15â:â0. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and glycolipid. The predominant menaquinone was MK-11. The cell wall amino acids were 2,4-diaminobutyric acid, alanine, glutamic acid, glycine and threonine. Based on the molecular and chemotaxonomic data, as well as the physiological and biochemical characteristics, strain JW-1T is considered to represent a novel species of the genus Leucobacter, for which the name Leucobacter triazinivorans is proposed. The type strain is JW-1T (=DSM 105188T=LMG 30083T).
Asunto(s)
Actinomycetales/clasificación , Herbicidas/metabolismo , Filogenia , Prometrina/metabolismo , Aguas del Alcantarillado/microbiología , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , Aminobutiratos , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/químicaRESUMEN
In order to ensure raw consumption safety the dissipation behavior, migration, postharvest processing, and dietary risk assessment of five pyrethroids in mushroom (Auricularia polytricha Mont.) cultivated under Chinese greenhouse-field conditions. Half-lives (t1/2) of pyrethroids in fruiting body and substrate samples were 3.10-5.26 and 17.46-40.06 d, respectively. Fenpropathrin dissipated rapidly in fruiting bodies (t1/2 3.10 d); bifenthrin had the longest t1/2. At harvest, pyrethroid residues in A. polytricha (except fenpropathrin) were above the respective maximum residue limits (MRLs). Some migration of lambda-cyhalothrin was observed in the substrate-fruit body system. In postharvest-processing, sun-drying and soaking reduced pyrethroid residues by 25-83%. We therefore recommend that consumers soak these mushrooms in 0.5% NaHCO3 at 50 °C for 90 min. Pyrethroids exhibit a particularly low PF value of 0.08-0.13%, resulting in a negligible exposure risk upon mushroom consumption. This study provides guidance for the safe application of pyrethroids to edible fungi, and for the establishment of MRLs in mushrooms to reduce pesticide exposure in humans.
Asunto(s)
Basidiomycota , Análisis de los Alimentos , Piretrinas , Basidiomycota/química , Basidiomycota/metabolismo , Piretrinas/análisis , Piretrinas/metabolismoRESUMEN
Arsenic (As) speciation in the phloem sap of rice plants and its role in As accumulation in rice grains remain largely uncharacterized. In the present study, we tested As chemical species in the phloem exudates of rice treated with arsenate [As(V)], arsenite [As(III)], monomethylarsonic acid [MMA(V)], or dimethylarsinic acid [DMA(V)]. As(V) was the main species (58%) in the phloem exudates of As(V)-exposed rice, whereas As(III) predominated (69%) in As(III)-exposed rice. A large proportion of As(V) (41-45%) was observed in the phloem exudates when rice was treated with methylated As species. High concentrations of phytochelatins were detected in the phloem exudates when the As(V) treatment level was increased. The role of phloem transport was analyzed by applying a ±stem-girdling treatment to the rice plants, limiting phloem transport to the grain in rice pulsed with As(III), As(V), MMA(V), or DMA(V). The findings of the present study indicate that organic As is more mobile than inorganic As during phloem transport. Phloem transport accounted for 54% of As(III), 56% of As(V), 100% of MMA(V), and 89% of DMA(V) transport to the grain. The total As concentration and As(III) percentage in rice phloem and grain were significantly affected by increasing the phosphate concentration in the medium.
Asunto(s)
Arsénico/metabolismo , Arsenicales/metabolismo , Grano Comestible/metabolismo , Oryza/metabolismo , Floema/metabolismoRESUMEN
The residue dynamics and risk assessment of prochloraz and its metabolite 2,4,6-trichlorophenol (2,4,6-TCP) in apple under different treatment concentrations were investigated using a GC-ECD method. The derivatization percent of prochloraz to 2,4,6-TCP was stable and complete. The recoveries of prochloraz and 2,4,6-TCP were 82.9%-114.4%, and the coefficients of variation (CV) were 0.7%-8.6% for the whole fruit, apple pulp, and apple peel samples. Under the application of 2 °C 2.0 g/L, 2 °C 1.0 g/L, 20 °C 2.0 g/L, and 20 °C 1.0 g/L treatment, the half-life for the degradation of prochloraz was 57.8-86.6 d in the whole fruit and apple peel, and the prochloraz concentration in the apple pulp increased gradually until a peak (0.72 mg·kg-1) was reached. The concentration of 2,4,6-TCP was below 0.1 mg·kg-1 in four treatment conditions and not detected (Asunto(s)
Clorofenoles/análisis
, Fungicidas Industriales/análisis
, Imidazoles/análisis
, Malus/química
, Clorofenoles/farmacología
, Fungicidas Industriales/farmacología
, Semivida
, Imidazoles/farmacología
, Malus/efectos de los fármacos
, Extractos Vegetales/química
, Extractos Vegetales/farmacología
, Temperatura
RESUMEN
A Gram-stain-negative, aerobic, coccoid to small rod-shaped bacterium, designated X1T, was isolated from sludge collected from the vicinity of a pesticide manufacturer in Nantong, Jiangsu Province, China. Based on 16S rRNA gene sequence analysis, strain X1T belonged to the genus Cupriavidus, and was most closely related to Cupriavidus taiwanensis LMG 19424T (99.1 % 16S rRNA gene sequence similarity) and Cupriavidus alkaliphilus LMG 26294T (98.9 %). Strain X1T showed 16S rRNA gene sequence similarities of 97.2-98.2 % with other species of the genus Cupriavidus. The major cellular fatty acids of strain X1T were C16 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3), C18 : 1ω7c and C17 : 0 cyclo, and the major respiratory quinone was ubiquinone Q-8. The major polar lipids of strain X1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phospholipid and hydroxyphosphatidylethanolamine. The DNA G+C content was 66.6 mol%. The DNA-DNA relatedness values of strain X1T with the five reference strains C. taiwanensis LMG 19424T, C. alkaliphilus LMG 26294T, Cupriavidus necator LMG 8453T, Cupriavidus gilardii LMG 5886T and 'Cupriavidus yeoncheonense' KCTC 42053 were lower than 70 %. The results obtained from phylogenetic analysis, phenotypic characterization and DNA-DNA hybridization indicated that strain X1T should be proposed to represent a novel species of the genus Cupriavidus, for which the name Cupriavidus nantongensis sp. nov. is proposed. The type strain is X1T (=KCTC 42909T=LMG 29218T).
Asunto(s)
Cloropirifos/metabolismo , Cupriavidus/clasificación , Filogenia , Aguas del Alcantarillado/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , Cupriavidus/genética , Cupriavidus/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/químicaRESUMEN
This study aims to explore the aphicidal activity and underlying mechanism of Illicium verum Hook. f. that is used as both food and medicine. The contact toxicity of the extracts from I. verum fruit with methyl alcohol (MA), ethyl acetate (EA), and petroleum ether (PE) against Myzus persicae (Sulzer), and the activities of acetylcholinesterase (AChE) and glutathione S-transferases (GSTs) of M. persicae after contact treatment were tested. The results showed that MA, EA, and PE extracts of 1.000 mg/l caused, respectively, M. persicae mortalities of 68.93%, 89.95% and 74.46%, and the LC50 of MA, EA, and PE extracts were 0.31, 0.14 and 0.27 mg/l at 72 h after treatment, respectively; the activities of AChE and GSTs in M. persicae were obviously inhibited by the three extracts, as compared with the control, with strong dose and time-dependent effects, the inhibition rates on the whole reached more than 50.00% at the concentration of 1.000 mg/l at 72 h after treatment. The inhibition of the extracts on AChE and GSTs activities (EA extract > PE extract > MA extract) were correlated with theirs contact toxic effects, so it is inferred that the decline of the metabolic enzymes activities may be one of important reasons of M. persicae death. The study results suggested that I. verum extracts have potential as a eco-friendly biopesticide in integrated pest management against M. persicae.
Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Áfidos/enzimología , Frutas/química , Glutatión Transferasa/efectos de los fármacos , Illicium/química , Insecticidas , Extractos Vegetales , Acetilcolinesterasa/metabolismo , Animales , Glutatión Transferasa/metabolismo , Insecticidas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificaciónRESUMEN
Biothiols such as cysteine (Cys) and homocysteine (Hcy) are essential biomolecules participating in molecular and physiological processes in an organism. However, their selective detection remains challenging. In this study, ethyl 2-(3-formyl-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (NL) was synthesized as a ratiometric fluorescent probe for the rapid and selective detection of Cys and Hcy over glutathione (GSH) and other amino acids. The fluorescence intensity of the probe in the presence of Cys/Hcy increased about 3-fold at a concentration of 20 equiv. of the probe, compared with that in the absence of these chemicals in aqueous media. The limits of detection of the fluorescent assay were 0.911 µM and 0.828 µM of Cys and Hcy, respectively. ¹H-NMR and MS analyses indicated that an excited-state intramolecular proton transfer is the mechanism of fluorescence sensing. This ratiometric probe is structurally simple and highly selective. The results suggest that it has useful applications in analytical chemistry and diagnostics.
Asunto(s)
Cisteína/análisis , Colorantes Fluorescentes/síntesis química , Homocisteína/análisis , Tiazoles/síntesis química , Colorantes Fluorescentes/farmacología , Glutatión/química , Humanos , Cinética , Técnicas de Sonda Molecular , Espectrometría de Fluorescencia , Tiazoles/farmacologíaRESUMEN
In the present study, 3-(fluorobenzylideneamino)-6-chloro-1-(3,3-dimethylbutanoyl)-phenyl-2,3-dihydroquinazolin-4(1H)-one (FDQL) derivatives have been designed and synthesized to study the interaction between fluorine substituted dihydroquinazoline derivatives with human serum albumin (HSA) using fluorescence, circular dichroism and Fourier transform infrared spectroscopy. The results indicated that the FDQL could bind to HSA, induce conformation and the secondary structure changes of HSA, and quench the intrinsic fluorescence of HSA through a static quenching mechanism. The thermodynamic parameters, ΔH, ΔS, and ΔG, calculated at different temperatures, revealed that the binding was through spontaneous and hydrophobic forces and thus played major roles in the association. Based on the number of binding sites, it was considered that one molecule of FDQL could bind to a single site of HSA. Site marker competition experiments indicated that the reactive site of HSA to FDQL mainly located in site II (subdomain IIIA). The substitution by fluorine in the benzene ring could increase the interactions between FDQL and HSA to some extent in the proper temperature range through hydrophobic effect, and the substitution at meta-position enhanced the affinity greater than that at para- and ortho-positions.