RESUMEN
BACKGROUND: Cardiac T1 mapping is valuable for evaluating myocardial fibrosis, yet its resolution and acquisition efficiency are limited, potentially obscuring visualization of small pathologies. PURPOSE: To develop a technique for high-resolution cardiac T1 mapping with a less-than-100-millisecond acquisition window based on radial MOdified Look-Locker Inversion recovery (MOLLI) and a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT) constrained reconstruction. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: Sixteen healthy subjects (age 25 ± 3 years, 44% females) and 12 patients with suspected cardiomyopathy (age 57 ± 15 years, 42% females), NiCl2-agar phantom. FIELD STRENGTH/SEQUENCE: 3-T, standard MOLLI, radial MOLLI, inversion-recovery spin-echo, late gadolinium enhancement. ASSESSMENT: SCC-LLRT was compared to a conventional locally low-rank (LLR) method through simulations using Normalized Root-Mean-Square Error (NRMSE) and Structural Similarity Index Measure (SSIM). Radial MOLLI was compared to standard MOLLI across phantom, healthy subjects, and patients. Three independent readers subjectively evaluated the quality of T1 maps using a 5-point scale (5 = best). STATISTICAL TESTS: Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient analysis, linear regression, Bland-Altman analysis. P < 0.05 was considered statistically significant. RESULTS: In simulations, SCC-LLRT demonstrated a significant improvement in NRMSE and SSIM compared to LLR. In phantom, both radial MOLLI and standard MOLLI provided consistent T1 estimates across different heart rates. In healthy subjects, radial MOLLI exhibited a significantly lower mean T1 (1115 ± 39 msec vs. 1155 ± 36 msec), similar T1 SD (74 ± 14 msec vs. 67 ± 23 msec, P = 0.20), and similar T1 reproducibility (28 ± 18 msec vs. 22 ± 15 msec, P = 0.34) compared to standard MOLLI. In patients, the proposed method significantly improved the sharpness of myocardial boundaries (4.50 ± 0.65 vs. 3.25 ± 0.43), the conspicuity of papillary muscles and fine structures (4.33 ± 0.74 vs. 3.33 ± 0.47), and artifacts (4.75 ± 0.43 vs. 3.83 ± 0.55). The reconstruction time for a single slice was 5.2 hours. DATA CONCLUSION: The proposed method enables high-resolution cardiac T1 mapping with a short acquisition window and improved image quality. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
RESUMEN
BACKGROUND: Myocardial fibrosis is a common feature in various cardiac diseases. It causes adverse cardiac remodeling and is associated with poor clinical outcomes. Late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) are the standard MRI techniques for detecting focal and diffuse myocardial fibrosis. However, these contrast-enhanced techniques require the administration of gadolinium contrast agents, which is not applicable to patients with gadolinium contraindications. To eliminate the need of contrast agents, we develop and apply an endogenous free-breathing T1ρ dispersion imaging technique (FB-MultiMap) for diagnosing diffuse myocardial fibrosis in a cohort with suspected cardiomyopathies. METHODS: The proposed FB-MultiMap technique, enabling T2, T1ρ and their difference (myocardial fibrosis index, mFI) quantification in a single scan was developed in phantoms and 15 healthy subjects. In the clinical study, 55 patients with suspected cardiomyopathies were imaged using FB-MultiMap, conventional native T1 mapping, LGE, and ECV imaging. The accuracy of the endogenous parameters for predicting increased ECV was evaluated using receiver operating characteristic (ROC) curve analysis. In addition, the correlation of native T1, T1ρ, and mFI with ECV was respectively assessed using Pearson correlation coefficients. RESULTS: FB-MultiMap showed a good agreement with conventional separate breath-hold mapping techniques in phantoms and healthy subjects. Considering all the patients, T1ρ was more accurate than mFI and native T1 for predicting increased ECV, with area under the curve (AUC) values of 0.91, 0.79 and 0.75, respectively, and showed stronger correlation with ECV (correlation coefficient r: 0.72 vs. 0.52 vs. 0.40). In the subset of 47 patients with normal T2 values, the diagnostic performance of mFI was significantly strengthened (AUC=0.90, r=0.83), outperforming T1ρ and native T1. CONCLUSION: The proposed free-breathing T1ρ dispersion imaging technique enabling simultaneous quantification of T2, T1ρ and mFI in a single scan has shown great potential for diagnosing diffuse myocardial fibrosis in patients with complex cardiomyopathies without contrast agents.
RESUMEN
BACKGROUND: Insulin resistance is an overlapping risk factor for both heart and breast cancer, while its interaction with cardiotoxicity in breast cancer (BC) patients is not clear. This study investigated the impact of insulin resistance on cardiac remodeling in patients with human epidermal growth factor receptor 2 (HER2)-positive BC during and after trastuzumab therapy in real-world clinical practice. METHODS: HER2-positive BC patients who received trastuzumab treatment between December 2012 and December 2017 were reviewed and 441 patients with baseline metabolic indices and serial echocardiographic measurements (baseline, 6, 12, and 18 months) after trastuzumab therapy initiation were included. Repeated measurement analysis of variance was used to evaluate temporal trends in multiparameter echocardiography. Linear mixed model was applied to further evaluate the role of insulin resistance in forementioned changes. Correlation of homeostasis model assessment-estimated insulin resistance (HOMA-IR) and triglyceride-glucose index (TyG) levels to changes in echocardiography parameters was explored. RESULTS: Of 441 patients (mean age 54 ± 10 [SD] years), 61.8% received anthracycline-based chemotherapy, 33.5% received left-sided radiotherapy, 46% received endocrine therapy. No symptomatic cardiac dysfunction was observed over the therapy course. A total of 19 (4.3%) participants experienced asymptomatic cancer therapy-related cardiac dysfunction (CTRCD), and the peak onset time was 12 months after the initiation of trastuzumab. Albeit relatively low CTRCD incidence, cardiac geometry remodeling, especially left atrial (LA) dilation over therapy was notable and was more severe in high HOMA-IR and TyG level groups (P < 0.01). Noteworthy, a partial reversibility of cardiac remodeling was observed with treatment cessation. Additionally, HOMA-IR level positively correlated to changes in LA diameter from baseline to 12 months (r = 0.178, P = 0.003). No significant association (all P > 0.10) was detected between HOMA-IR or TyG level and dynamic left ventricular parameter evaluation. Multivariate linear regression analysis demonstrated that higher HOMA-IR level was an independent determinant for LA enlargement in BC patients during anti-HER2 targeted therapy course after adjusting for confounding risk factors (P = 0.006). CONCLUSION: Insulin resistance was associated with left atrial adverse remodeling (LAAR) in HER2-positive BC patients that received standard trastuzumab therapy, indicating that insulin resistance could be a supplementation to baseline cardiovascular risk stratification proforma for HER2-targeted antitumor therapies.
Asunto(s)
Fibrilación Atrial , Neoplasias de la Mama , Cardiopatías , Resistencia a la Insulina , Adulto , Femenino , Humanos , Persona de Mediana Edad , Fibrilación Atrial/complicaciones , Neoplasias de la Mama/patología , Cardiotoxicidad/etiología , Cardiotoxicidad/tratamiento farmacológico , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapéutico , Remodelación VentricularRESUMEN
BACKGROUND: T1, T2 and T1ρ are well-recognized parameters for quantitative cardiac MRI. Simultaneous estimation of these parameters allows for comprehensive myocardial tissue characterization, such as myocardial fibrosis and edema. However, conventional techniques either quantify the parameters individually with separate breath-hold acquisitions, which may result in unregistered parameter maps, or estimate multiple parameters in a prolonged breath-hold acquisition, which may be intolerable to patients. We propose a free-breathing multi-parametric mapping (FB-MultiMap) technique that provides co-registered myocardial T1, T2 and T1ρ maps in a single efficient acquisition. METHODS: The proposed FB-MultiMap performs electrocardiogram-triggered single-shot Cartesian acquisition over 16 consecutive cardiac cycles, where inversion, T2 and T1ρ preparations are introduced for varying contrasts. A diaphragmatic navigator was used for prospective through-plane motion correction and the in-plane motion was corrected retrospectively with a group-wise image registration method. Quantitative mapping was conducted through dictionary matching of the motion corrected images, where the subject-specific dictionary was created using Bloch simulations for a range of T1, T2 and T1ρ values, as well as B1 factors to account for B1 inhomogeneities. The FB-MultiMap was optimized and validated in numerical simulations, phantom experiments, and in vivo imaging of 15 healthy subjects and six patients with suspected cardiac diseases. RESULTS: The phantom T1, T2 and T1ρ values estimated with FB-MultiMap agreed well with reference measurements with no dependency on heart rate. In healthy subjects, FB-MultiMap T1 was higher than MOLLI T1 mapping (1218 ± 50 ms vs. 1166 ± 38 ms, p < 0.001). The myocardial T2 and T1ρ estimated with FB-MultiMap were lower compared to the mapping with T2- or T1ρ-prepared 2D balanced steady-state free precession (T2: 41.2 ± 2.8 ms vs. 42.5 ± 3.1 ms, p = 0.06; T1ρ: 45.3 ± 4.4 ms vs. 50.2 ± 4.0, p < 0.001). The pathological changes in myocardial parameters measured with FB-MultiMap were consistent with conventional techniques in all patients. CONCLUSION: The proposed free-breathing multi-parametric mapping technique provides co-registered myocardial T1, T2 and T1ρ maps in 16 heartbeats, achieving similar mapping quality to conventional breath-hold mapping methods.
Asunto(s)
Corazón , Miocardio , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Valor Predictivo de las Pruebas , Miocardio/patología , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Reproducibilidad de los ResultadosRESUMEN
PURPOSE: To develop a partially interpretable neural network for joint suppression of banding and flow artifacts in non-phase-cycled bSSFP cine imaging. METHODS: A dual-stage neural network consisting of a voxel-identification (VI) sub-network and artifact-suppression (AS) sub-network is proposed. The VI sub-network provides identification of artifacts, which guides artifact suppression and improves interpretability. The AS sub-network reduces banding and flow artifacts. Short-axis cine images of 12 frequency offsets from 28 healthy subjects were used to train and test the dual-stage network. An additional 77 patients were retrospectively enrolled to evaluate its clinical generalizability. For healthy subjects, artifact suppression performance was analyzed by comparison with traditional phase cycling. The partial interpretability provided by the VI sub-network was analyzed via correlation analysis. Generalizability was evaluated for cine obtained with different sequence parameters and scanners. For patients, artifact suppression performance and partial interpretability of the network were qualitatively evaluated by 3 clinicians. Cardiac function before and after artifact suppression was assessed via left ventricular ejection fraction (LVEF). RESULTS: For the healthy subjects, visual inspection and quantitative analysis found a considerable reduction of banding and flow artifacts by the proposed network. Compared with traditional phase cycling, the proposed network improved flow artifact scores (4.57 ± 0.23 vs 3.40 ± 0.38, P = 0.002) and overall image quality (4.33 ± 0.22 vs 3.60 ± 0.38, P = 0.002). The VI sub-network well identified the location of banding and flow artifacts in the original movie and significantly correlated with the change of signal intensities in these regions. Changes of imaging parameters or the scanner did not cause a significant change of overall image quality relative to the baseline dataset, suggesting a good generalizability. For the patients, qualitative analysis showed a significant improvement of banding artifacts (4.01 ± 0.50 vs 2.77 ± 0.40, P < 0.001), flow artifacts (4.22 ± 0.38 vs 2.97 ± 0.57, P < 0.001), and image quality (3.91 ± 0.45 vs 2.60 ± 0.43, P < 0.001) relative to the original cine. The artifact suppression slightly reduced the LVEF (mean bias = -1.25%, P = 0.01). CONCLUSIONS: The dual-stage network simultaneously reduces banding and flow artifacts in bSSFP cine imaging with a partial interpretability, sparing the need for sequence modification. The method can be easily deployed in a clinical setting to identify artifacts and improve cine image quality.
Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Estudios Retrospectivos , Volumen Sistólico , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Función Ventricular Izquierda , Redes Neurales de la Computación , Imagen por Resonancia CinemagnéticaRESUMEN
Transketolase (Tkt), an enzyme in pentose phosphate pathway, has been reported to regulate genome instability and cell survival in cancers. Yet, the role of Tkt after myocardial ischemic injury remains to be elucidated. Label-free proteomics revealed dramatic elevation of Tkt in murine hearts after myocardial infarction (MI). Lentivirus-mediated Tkt knockdown ameliorated cardiomyocyte apoptosis and preserved the systolic function after myocardial ischemic injury. In contrast, Tkt overexpression led to the opposite effects. Inducible conditional cardiomyocyte Tkt-knockout mice were generated, and cardiomyocyte-expressed Tkt was found to play an intrinsic role in the ischemic heart failure of these model mice. Furthermore, through luciferase assay and chromatin immunoprecipitation, Tkt was shown to be a direct target of transcription factor Krüppel-like factor 5 (Klf5). In cardiomyocytes under ischemic stress, Tkt redistributed into the nucleus. By binding with the full-length poly(ADP-ribose) polymerase 1 (Parp1), facilitating its cleavage, and activating apoptosis inducible factor (Aif) subsequently, nuclear Tkt demonstrated its non-metabolic functions. Overall, our study confirmed that elevated nuclear Tkt plays a noncanonical role in promoting cardiomyocyte apoptosis via the cleaved Parp1/Aif pathway, leading to the deterioration of cardiac dysfunction.
Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Transcetolasa , Animales , Apoptosis , Factor Inductor de la Apoptosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Transcetolasa/metabolismoRESUMEN
ABSTRACT: Coronary artery disease (CAD) and associated comorbidities such as heart failure (HF) remain the leading cause of morbidity and mortality worldwide attributed to, at least partially, the lack of biomarkers for efficient disease diagnosis. Here, we evaluated the diagnostic potential of serum peptidoglycan recognition protein 1 (PGLYRP1), an important component of the innate immunity and inflammation system, for both CAD and HF. A machine-learning method (random forest) was used to evaluate the clinical utility of circulating PGLYRP1 for diagnosis of CAD and HF in a total of 370 individuals. Causal links of chronic serum PGLYRP1 elevation to both diseases were further explored in ApoE-/- mice. The serum levels of PGLYRP1 were significantly higher in individuals with either chronic CAD or acute coronary syndrome than those in those without coronary artery stenosis (the control group) and even more pronounced in CAD individuals with concomitant HF. Our random forest classifier revealed that this protein performed better than other recommended clinical indicators in distinguishing the CAD from the control individuals. In addition, this protein associates more with the biomarkers of HF including left ventricular ejection fraction than inflammation. Notably, our mice experiment indicated that long-term treatment with recombinant PGLYRP1 could significantly impair the cardiovascular system as reflected from both increased atherogenic lesions and reduced fractional shortening of the left ventricle. Our findings, therefore, supported the circulating levels of PGLYRP1 as a valuable biomarker for both CAD and HF.
Asunto(s)
Síndrome Coronario Agudo/sangre , Enfermedad de la Arteria Coronaria/sangre , Estenosis Coronaria/sangre , Citocinas/sangre , Insuficiencia Cardíaca/sangre , Síndrome Coronario Agudo/diagnóstico por imagen , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/prevención & control , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Biomarcadores/sangre , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Estudios Transversales , Citocinas/farmacología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/diagnóstico , Humanos , Aprendizaje Automático , Masculino , Ratones Noqueados para ApoE , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Regulación hacia ArribaRESUMEN
Brain injury in premature infants, especially periventricular leukomalacia, is an important cause of neurologic disabilities. Inflammation contributes to perinatal brain injury development, but the essential mediators that lead to early-life brain injury remain largely unknown. Neonates have reduced capacity for mounting conventional αßT-cell responses. However, γδT cells are already functionally competent during early development and are important in early-life immunity. We investigated the potential contribution of γδT cells to preterm brain injury using postmortem brains from human preterm infants with periventricular leukomalacia and two animal models of preterm brain injury-the hypoxic-ischemic mouse model and a fetal sheep asphyxia model. Large numbers of γδT cells were observed in the brains of mice, sheep, and postmortem preterm infants after injury, and depletion of γδT cells provided protection in the mouse model. The common γδT-cell-associated cytokines interferon-γ and IL-17A were not detectable in the brain. Although there were increased mRNA levels of Il17f and Il22 in the mouse brains after injury, neither IL-17F nor IL-22 cytokines contributed to preterm brain injury. These findings highlight unique features of injury in the developing brain, where, unlike injury in the mature brain, γδT cells function as initiators of injury independently of common γδT-cell-associated cytokines. This finding will help to identify therapeutic targets for preventing or treating preterm infants with brain injury.
Asunto(s)
Encéfalo/patología , Hipoxia-Isquemia Encefálica/patología , Linfocitos Intraepiteliales/patología , Leucomalacia Periventricular/patología , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Linfocitos Intraepiteliales/metabolismo , Leucomalacia Periventricular/metabolismo , Masculino , Ratones , OvinosRESUMEN
BACKGROUND: Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy. METHODS: In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αßT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd -/-, lacking γδT cells), and TCRα-deficient (Tcra -/-, lacking αßT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze. RESULTS: White matter development was normal in Tcrd -/- and Tcrα -/- compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα -/- mice, but not in the Tcrd -/- mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα -/- mice, but no such effect was observed in Tcrd -/- mice. CONCLUSIONS: Our results suggest that γδT cells but not αßT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.
Asunto(s)
Leucoencefalopatías/etiología , Trastornos del Movimiento/etiología , Receptores de Antígenos de Linfocitos T alfa-beta/deficiencia , Receptores de Antígenos de Linfocitos T gamma-delta/deficiencia , Sepsis/complicaciones , Animales , Animales Recién Nacidos , Ansiedad/etiología , Ansiedad/genética , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Marcha/efectos de los fármacos , Marcha/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Sepsis/inducido químicamente , Sepsis/patología , Bazo/patología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patologíaRESUMEN
Background: Cardiac T2 mapping is a valuable tool for diagnosing myocardial edema, inflammation, and infiltration, yet its spatial resolution is limited by the single-shot balanced steady-state free precession acquisition and duration of the cardiac quiescent period, which may reduce sensitivity in detecting focal lesions in the myocardium. To improve spatial resolution without extending the acquisition window, this study examined a novel accelerated Cartesian cardiac T2 mapping technique. Methods: We introduce a novel improved-resolution cardiac T2 mapping approach leveraging a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT)-constrained reconstruction algorithm in conjunction with Cartesian undersampling trajectory. The method was validated with phantom imaging and in vivo imaging that involved 13 healthy participants and 20 patients. The SCC-LLRT algorithm was compared with a conventional locally low-rank (LLR)-constrained algorithm and a nonlinear inversion (NLINV) reconstruction algorithm. The improved-resolution T2 mapping (1.4 mm × 1.4 mm) was compared globally and regionally with the regular-resolution T2 mapping (2.3 mm × 1.9 mm) according to the 16-segment model of the American Heart Association. The agreement between the improved-resolution and regular-resolution T2 mappings was evaluated by linear regression and Bland-Altman analyses. Image quality was scored by two experienced reviewers on a five-point scale (1, worst; 5, best). Results: In healthy participants, SCC-LLRT significantly reduced artifacts (4.50±0.39) compared with LLR (2.31±0.60; P<0.001) and NLINV (3.65±0.56; P<0.01), suppressed noise (4.12±0.35) compared with NLINV (2.65±0.50; P<0.001), and improved the overall image quality (4.38±0.40) compared with LLR (2.54±0.41; P<0.001) and NLINV (3.04±0.50; P<0.001). Compared with the regular-resolution T2 mapping, the proposed method significantly improved the sharpness of myocardial boundaries (4.46±0.60 vs. 3.04±0.50; P<0.001) and the conspicuity of papillary muscles and fine structures (4.46±0.63 vs. 2.65±0.30; P<0.001). Myocardial T2 values obtained with the proposed method correlated significantly with those from regular-resolution T2 mapping in both healthy participants (r=0.79; P<0.01) and patients (r=0.94; P<0.001). Conclusions: The proposed SCC-LLRT-constrained reconstruction algorithm in conjunction with Cartesian undersampling pattern achieved improved-resolution cardiac T2 mapping of comparable accuracy, precision, and scan-rescan reproducibility compared with the regular-resolution T2 mapping. The higher resolution improved the sharpness of myocardial borders and the conspicuity of image fine details, which may increase diagnostic confidence in cardiac T2 mapping for detecting small lesions.
RESUMEN
B vitamins are intricately involved in various physiological processes vital for health. Their significance is complicated by the heterogeneous landscape of B vitamin distribution in diets and the contributions of the gut microbiota. Here, we delve into the impact of these factors on B vitamins and introduce strategies, with a focus on microbiota-based therapeutic options, to enhance their availability for improved well-being. Additionally, we provide an ecological and evolutionary perspective on the importance of B vitamins to human-microbiota interactions. In the dynamic realms of nutrition and microbiome science, these essential micronutrients continue to play a fundamental role in our understanding of disease development.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Complejo Vitamínico B , Humanos , Dieta , Microbioma Gastrointestinal/fisiología , Microbiota/fisiología , Estado NutricionalRESUMEN
Cardiac magnetic resonance imaging (CMR) has emerged as a valuable diagnostic tool for cardiac diseases. However, a significant drawback of CMR is its slow imaging speed, resulting in low patient throughput and compromised clinical diagnostic quality. The limited temporal resolution also causes patient discomfort and introduces artifacts in the images, further diminishing their overall quality and diagnostic value. There has been growing interest in deep learning-based CMR imaging algorithms that can reconstruct high-quality images from highly under-sampled k-space data. However, the development of deep learning methods requires large training datasets, which have so far not been made publicly available for CMR. To address this gap, we released a dataset that includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects. Imaging studies include cardiac cine and mapping sequences. The 'CMRxRecon' dataset contains raw k-space data and auto-calibration lines. Our aim is to facilitate the advancement of state-of-the-art CMR image reconstruction by introducing standardized evaluation criteria and making the dataset freely accessible to the research community.
Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Algoritmos , Corazón/diagnóstico por imagen , Cardiopatías/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Silymarin has been used for improving hepatic damage and lipid disorders, but its action mechanism remains to be clarified. Here, we investigate the contributions of the gut microbiota to the improvement of liver lipid metabolism by silymarin. We find i) strong and significant microbial shifts upon silymarin but not silibinin treatment; ii) over 60% variations of liver fat are explained by silymarin-induced bacterial B12 production in male rats but not in male germ-free mice; iii) fecal microbiota transplantation confirms their protective roles against liver fat accumulation; iv) upregulation of one-carbon metabolism and fatty acid degradation pathways are observed based on the liver transcriptome analyses; and v) in humans the delta changes of serum B12 associate negatively with the fluctuations of serum triglycerides. Overall, we reveal a mechanism of action underpinning the lipid-lowering effect of silymarin via the gut microbiota and its vitamin B12 producing capabilities.
Asunto(s)
Silimarina , Humanos , Ratas , Masculino , Ratones , Animales , Silimarina/farmacología , Silimarina/metabolismo , Vitamina B 12/farmacología , Vitamina B 12/metabolismo , Antioxidantes/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Lípidos/farmacologíaRESUMEN
Background Catestatin has been reported as a pleiotropic cardioprotective peptide. Heart failure with preserved ejection fraction (HFpEF) was considered a heterogeneous syndrome with a complex cause. We sought to investigate the role of catestatin in HFpEF and diastolic dysfunction. METHODS AND RESULTS Administration of recombinant catestatin (1.5 mg/kg/d) improved diastolic dysfunction and left ventricular chamber stiffness in transverse aortic constriction mice with deoxycorticosterone acetate pellet implantation, as reflected by Doppler tissue imaging and pressure-volume loop catheter. Less cardiac hypertrophy and myocardial fibrosis was observed, and transcriptomic analysis revealed downregulation of mitochondrial electron transport chain components after catestatin treatment. Catestatin reversed mitochondrial structural and respiratory chain component abnormality, decreased mitochondrial proton leak, and reactive oxygen species generation in myocardium. Excessive oxidative stress induced by Ru360 abolished catestatin treatment effects on HFpEF-like cardiomyocytes in vitro, indicating the beneficial role of catestatin in HFpEF as a mitochondrial ETC modulator. The serum concentration of catestatin was tested among 81 patients with HFpEF and 76 non-heart failure controls. Compared with control subjects, serum catestatin concentration was higher in patients with HFpEF and positively correlated with E velocity to mitral annular e' velocity ratio, indicating a feedback compensation role of catestatin in HFpEF. Conclusions Catestatin protects against diastolic dysfunction in HFpEF through attenuating mitochondrial electron transport chain-derived reactive oxygen species generation. Serum catestatin concentration is elevated in patients with HFpEF, probably as a relatively insufficient but self-compensatory mechanism.
Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Ratones , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Volumen Sistólico/fisiología , Especies Reactivas de Oxígeno , Miocardio , Función Ventricular Izquierda/fisiología , Disfunción Ventricular Izquierda/prevención & controlRESUMEN
This study aimed to identify microbial signatures that contribute to the shared etiologies between chronic heart failure (CHF), type 2 diabetes, and chronic kidney disease. The serum levels of 151 microbial metabolites were measured in 260 individuals from the Risk Evaluation and Management of heart failure cohort, and it was found that those metabolites varied by an order of 105 fold. Out of 96 metabolites associated with the three cardiometabolic diseases, most were validated in two geographically independent cohorts. In all three cohorts, 16 metabolites including imidazole propionate (ImP) consistently showed significant differences. Notably, baseline ImP levels were three times higher in the Chinese compared with the Swedish cohorts and increased by 1.1-1.6 fold with each additional CHF comorbidity in the Chinese population. Cellular experiments further supported a causal link between ImP and distinct CHF relevant phenotypes. Additionally, key microbial metabolite-based risk scores were superior in CHF prognosis than the traditional Framingham or Get with the Guidelines-Heart Failure risk scores. Interactive visualization of these specific metabolite-disease links is available on our omics data server (https://omicsdata.org/Apps/REM-HF/).
Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Comorbilidad , Enfermedad Crónica , Factores de Riesgo , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/epidemiologíaRESUMEN
Abnormal myelination underlies the pathology of white matter diseases such as preterm white matter injury and multiple sclerosis. Osteopontin (OPN) has been suggested to play a role in myelination. Murine OPN mRNA is translated into a secreted isoform (sOPN) or an intracellular isoform (iOPN). Whether there is an isoform-specific involvement of OPN in myelination is unknown. Here we generated mouse models that either lacked both OPN isoforms in all cells (OPN-KO) or lacked sOPN systemically but expressed iOPN specifically in oligodendrocytes (OLs-iOPN-KI). Transcriptome analysis of isolated oligodendrocytes from the neonatal brain showed that genes and pathways related to increase of myelination and altered cell cycle control were enriched in the absence of the two OPN isoforms in OPN-KO mice compared to control mice. Accordingly, adult OPN-KO mice showed an increased axonal myelination, as revealed by transmission electron microscopy imaging, and increased expression of myelin-related proteins. In contrast, neonatal oligodendrocytes from OLs-iOPN-KI mice compared to control mice showed differential regulation of genes and pathways related to the increase of cell adhesion, motility, and vasculature development, and the decrease of axonal/neuronal development. OLs-iOPN-KI mice showed abnormal myelin formation in the early phase of myelination in young mice and signs of axonal degeneration in adulthood. These results suggest an OPN isoform-specific involvement, and a possible interplay between the isoforms, in myelination, and axonal integrity. Thus, the two isoforms of OPN need to be separately considered in therapeutic strategies targeting OPN in white matter injury and diseases.
RESUMEN
Agriculture is a basic and pillar industry. With the integration and development of Internet+, platform economy, and various industries, the business model of agriculture-related platforms is also constantly innovating. In this context, it is necessary to recommend suitable business models for different types of agriculture-related platforms. Based on the characteristics of agriculture-related platforms and various business models, this paper proposes a business model recommendation algorithm based on radial basis function neural network (RBFNN). This method trains the RBFNN model with the goal of maximizing the correlation between agricultural-related platforms and business models. In the application stage, for a specific agriculture-related platform, after inputting its characteristic parameters, a suitable business model can be recommended. In the experiment, the proposed method is tested and verified with relevant data, and the results show the effectiveness of the method.
Asunto(s)
Aprendizaje Profundo , Agricultura/métodos , Algoritmos , Comercio , Redes Neurales de la ComputaciónRESUMEN
OBJECTIVE: To evaluate the effects of ifosfamide combined with liposome doxorubicin on osteosarcoma (OS) and its effects on serum IL-10, TNF-α, and IFN-γ in patients with OS. METHODS: A total of 86 patients with OS who received chemotherapy in Honghui Hospital, Xi'an Jiaotong University from Jan. 2017 to Dec. 2019 were enrolled. Patients treated by conventional doxorubicin + ifosfamide were assigned to the regular group (n=40). Others treated by liposome doxorubicin + ifosfamide were assigned to the research group (n=46). The clinical efficacy, 2-year survival rate, and adverse reactions of the two groups were evaluated and compared. ELISA was adopted for quantification of tumor specific growth factor (TSGF), vascular endothelial growth factor (VEGF), erb-b2 receptor tyrosine kinase 3 (ERBB3), tumor necrosis factor-α (TNF-α), interferon-gamma-γ (IFN-γ), and interleukin-10 (IL-10). The EORTC Quality of Life Questionnaire (QLQ-C30) was adopted to evaluate a patient's life quality. RESULTS: The research group showed a higher total effective rate and a higher 2-year survival rate than the regular group, but lower incidences of liver and kidney function injury, thrombocytopenia, and cardiotoxicity than the regular group. After therapy, lower levels of serum TSGF, VEGF, ERBB3, and TNF-α were found in the research group than those in the regular group. Higher levels of IFN-γ and IL-10 were found in the former than those in the latter. The research group got higher scores of QLQ-C30 than the regular group. CONCLUSION: Liposome doxorubicin + ifosfamide can improve the clinical efficacy on patients with OS and improve their recovery and life quality.
RESUMEN
Aspergillus niger (A. niger) and Syngonium podophyllum (S. podophyllum) have been used for wastewater treatment, and have exhibited a promising application in recent years. To determine the effects of A. niger on uranium enrichment and uranium stress antagonism of S. podophyllum, the S. podophyllum-A. niger combined system was established, and hydroponic remediation experiments were carried out with uranium-containing wastewater. The results revealed that the bioaugmentation of A. niger could increase the biomass of S. podophyllum by 5-7%, reverse the process of U(VI) reduction induced by S. podophyllum, and increase the bioconcentration factor (BCF) and translocation factor (TF) of S. podophyllum to uranium by 35-41 and 0.01-0.06, respectively, thereby improving the reduction of uranium in wastewater. Moreover, A. niger could promote the cell wall immobilization and the subcellular compartmentalization of uranium in the root of S. podophyllum, reduce the phytotoxicity of uranium entering root cells, and inhibit the calcium efflux from root cells, thereby withdrawing the stress of uranium on S. podophyllum.
Asunto(s)
Araceae/crecimiento & desarrollo , Aspergillus niger/metabolismo , Uranio/análisis , Aguas Residuales/química , Contaminantes Radiactivos del Agua/análisis , Purificación del Agua/métodos , Araceae/metabolismo , Biodegradación Ambiental , Biomasa , Hidroponía , Minerales , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismoRESUMEN
Knee osteoarthritis is a degenerative disease that may develop due ageing, obesity, strain, congenital abnormal joints, joint deformity or trauma. It is caused by many factors, such as degradation of articular cartilage injury, joint edge and subchondral bone hyperplasia of reactivity. Platelet-rich plasma (PRP) is an autologous blood sample that contains highly concentrated platelets and multiple cell growth factors. PRP promotes synovial cell proliferation and differentiation and may recover cartilage morphology. In the present study, the clinical efficacy of PRP was investigated in patients with knee osteoarthritis aged between 18 and 30 years in a phase-III clinical study. Following an 8-week baseline, patients with knee osteoarthritis were randomized into once-weekly, double-blind treatment with PRP (2-14 ml) or placebo groups. The results indicated that patients with osteoarthritis treated with PRP had modulated plasma concentrations of inflammatory factors and pro-angiogenic factors compared with the placebo group. Treatment responses were assessed by median percent reduction in inflammatory and pro-angiogenic factors and these improved with PRP treatment compared with the placebo. Clinical data indicated that PRP alleviated knee osteoarthritis and reduced humoral and cellular immune responses that led to beneficial effects on histological parameters. Inflammation was significantly alleviated in patients receiving PRP compared with the placebo group. The most common treatment-emergent adverse events in the presence of PRP were hypertension and proteinuria. In conclusion, treatment with PRP for patients with knee osteoarthritis presented beneficial effects in alleviating joint inflammation, cartilage destruction and bone damage, and repairing joint tissue. These results suggested that PRP may be a potential therapeutic agent for knee osteoarthritis.