Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(24): 4574-4586.e16, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36423580

RESUMEN

CRISPR-Cas systems are host-encoded pathways that protect microbes from viral infection using an adaptive RNA-guided mechanism. Using genome-resolved metagenomics, we find that CRISPR systems are also encoded in diverse bacteriophages, where they occur as divergent and hypercompact anti-viral systems. Bacteriophage-encoded CRISPR systems belong to all six known CRISPR-Cas types, though some lack crucial components, suggesting alternate functional roles or host complementation. We describe multiple new Cas9-like proteins and 44 families related to type V CRISPR-Cas systems, including the Casλ RNA-guided nuclease family. Among the most divergent of the new enzymes identified, Casλ recognizes double-stranded DNA using a uniquely structured CRISPR RNA (crRNA). The Casλ-RNA-DNA structure determined by cryoelectron microscopy reveals a compact bilobed architecture capable of inducing genome editing in mammalian, Arabidopsis, and hexaploid wheat cells. These findings reveal a new source of CRISPR-Cas enzymes in phages and highlight their value as genome editors in plant and human cells.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Animales , Humanos , Microscopía por Crioelectrón , Edición Génica , Genoma , Bacteriófagos/genética , ADN , ARN , Mamíferos/genética
2.
Mol Cell ; 82(11): 2148-2160.e4, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35659325

RESUMEN

Used widely for genome editing, CRISPR-Cas enzymes provide RNA-guided immunity to microbes by targeting foreign nucleic acids for cleavage. We show here that the native activity of CRISPR-Cas12c protects bacteria from phage infection by binding to DNA targets without cleaving them, revealing that antiviral interference can be accomplished without chemical attack on the invader or general metabolic disruption in the host. Biochemical experiments demonstrate that Cas12c is a site-specific ribonuclease capable of generating mature CRISPR RNAs (crRNAs) from precursor transcripts. Furthermore, we find that crRNA maturation is essential for Cas12c-mediated DNA targeting. These crRNAs direct double-stranded DNA binding by Cas12c using a mechanism that precludes DNA cutting. Nevertheless, Cas12c represses transcription and can defend bacteria against lytic bacteriophage infection when targeting an essential phage gene. Together, these results show that Cas12c employs targeted DNA binding to provide antiviral immunity in bacteria, providing a native DNase-free pathway for transient antiviral immunity.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Antivirales , Bacterias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasas/genética , Expresión Génica , ARN/metabolismo
3.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31578296

RESUMEN

Late gene transcription in the beta- and gammaherpesviruses depends on a set of virally encoded transcriptional activators (vTAs) that hijack the host transcriptional machinery and direct it to a subset of viral genes that are required for completion of the viral replication cycle and capsid assembly. In Kaposi's sarcoma-associated herpesvirus (KSHV), these vTAs are encoded by ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. Assembly of the vTAs into a complex is critical for late gene transcription, and thus, deciphering the architecture of the complex is central to understanding its transcriptional regulatory activity. Here, we generated an ORF66-null virus and confirmed that it fails to produce late genes and infectious virions. We show that ORF66 is incorporated into the vTA complex primarily through its interaction with ORF34, which is dependent upon a set of four conserved cysteine-rich motifs in the C-terminal domain of ORF66. While both ORF24 and ORF66 occupy the canonical K8.1 late gene promoter, their promoter occupancy requires the presence of the other vTAs, suggesting that sequence-specific, stable binding requires assembly of the entire complex on the promoter. Additionally, we found that ORF24 expression is impaired in the absence of a stable vTA complex. This work extends our knowledge about the architecture of the KSHV viral preinitiation complex and suggests that it functions as a complex to recognize late gene promoters.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is an oncogenic gammaherpesvirus that is the causative agent of multiple human cancers. The release of infectious virions requires the production of capsid proteins and other late genes, whose production is transcriptionally controlled by a complex of six virally encoded proteins that hijack the host transcription machinery. It is poorly understood how this complex assembles or what function five of its six components play in transcription. Here, we demonstrate that ORF66 is an essential component of this complex in KSHV and that its inclusion in the complex depends upon its C-terminal domain, which contains highly conserved cysteine-rich motifs reminiscent of zinc finger motifs. Additionally, we examined the assembly of the viral preinitiation complex at late gene promoters and found that while sequence-specific binding of late gene promoters requires ORF24, it additionally requires a fully assembled viral preinitiation complex.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Herpesvirus Humano 8/metabolismo , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Dominios Proteicos , Proteínas Virales/genética
4.
Sci Adv ; 9(51): eadj1397, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117877

RESUMEN

Neutrophil extracellular traps (NETs) not only counteract bacterial and fungal pathogens but can also promote thrombosis, autoimmunity, and sterile inflammation. The presence of citrullinated histones, generated by the peptidylarginine deiminase 4 (PAD4), is synonymous with NETosis and is considered independent of apoptosis. Mitochondrial- and death receptor-mediated apoptosis promote gasdermin E (GSDME)-dependent calcium mobilization and membrane permeabilization leading to histone H3 citrullination (H3Cit), nuclear DNA extrusion, and cytoplast formation. H3Cit is concentrated at the promoter in bone marrow neutrophils and redistributes in a coordinated process from promoter to intergenic and intronic regions during apoptosis. Loss of GSDME prevents nuclear and plasma membrane disruption of apoptotic neutrophils but prolongs early apoptosis-induced cellular changes to the chromatin and cytoplasmic granules. Apoptotic signaling engages PAD4 in neutrophils, establishing a cellular state that is primed for NETosis, but that occurs only upon membrane disruption by GSDME, thereby redefining the end of life for neutrophils.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Neutrófilos/metabolismo , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Trampas Extracelulares/genética , Trampas Extracelulares/metabolismo , Histonas/metabolismo , Epigénesis Genética
5.
Elife ; 92020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32519675

RESUMEN

Type V CRISPR-Cas interference proteins use a single RuvC active site to make RNA-guided breaks in double-stranded DNA substrates, an activity essential for both bacterial immunity and genome editing. The best-studied of these enzymes, Cas12a, initiates DNA cutting by forming a 20-nucleotide R-loop in which the guide RNA displaces one strand of a double-helical DNA substrate, positioning the DNase active site for first-strand cleavage. However, crystal structures and biochemical data have not explained how the second strand is cut to complete the double-strand break. Here, we detect intrinsic instability in DNA flanking the RNA-3' side of R-loops, which Cas12a can exploit to expose second-strand DNA for cutting. Interestingly, DNA flanking the RNA-5' side of R-loops is not intrinsically unstable. This asymmetry in R-loop structure may explain the uniformity of guide RNA architecture and the single-active-site cleavage mechanism that are fundamental features of all type V CRISPR-Cas systems.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Edición Génica/métodos , Estructuras R-Loop/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/genética , ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA