Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Res ; 235: 116653, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451578

RESUMEN

Antibiotics in groundwater have received widespread concern because high levels of them harm aquatic ecosystems and human health. This study aims to investigate the concentration, distribution, ecological and human health risks as well as potential sources of antibiotics in groundwater in the Hutuo River alluvial-pluvial fan, North China Plain. A total of 84 groundwater samples and nine surface water samples were collected, and 35 antibiotics were analyzed using ultra-performance liquid chromatography-tandem mass spectrometry. The results indicated that 12 antibiotics were detected in surface water with the total concentrations ranging from 5.33 ng/L to 64.73 ng/L. Macrolides were the primary category of antibiotics with a detection frequency of 77.8% (mean concentration: 9.14 ng/L). By contrast, in shallow granular aquifers (<150 m), 23 antibiotics were detected and the total concentrations of them ranged from below the method detection limit to 465.26 ng/L (detection frequency: 39.7%). Quinolones were the largest contributor of antibiotics with detection frequency and mean concentration of 32.1% and 12.66 ng/L, respectively. And ciprofloxacin and ofloxacin were the two preponderant individual antibiotics. The mean concentration of groundwater antibiotics in peri-urban areas was approximately 1.7-4.9 times that in other land use types. Livestock manure was the predominant source of antibiotics in groundwater. Erythromycin, sulfametoxydiazine, ofloxacin, and cinoxacin exhibited medium ecological risks to aquatic organisms. All antibiotics posed no risks to human health. The findings of this study provide valuable insights into the occurrence and management of antibiotic contamination in the groundwater in the Hutuo River alluvial-pluvial fan.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Antibacterianos/análisis , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes Químicos del Agua/análisis , Ríos/química , Agua , Ofloxacino/análisis , China , Agua Subterránea/química , Medición de Riesgo
2.
Ecotoxicol Environ Saf ; 191: 110210, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31958624

RESUMEN

Arsenic (As)-contaminated soils occur widely worldwide. In the present study, three low-cost Fe/Al-based materials, including red soil (RS), sponge iron filter (SIF) and Al-based water treatment sludge (WTS), were applied as amendments to remediate As-contaminated soils under anoxic conditions. After 180 d of incubation, the proportion of the sum of nonspecifically absorbed As (F1) and specifically absorbed As (F2) to the total As was reduced by 6%, 52% and 13% with 5% of RS, SIF and WTS addition, respectively, compared to the control soil (31%). The results showed that among the three amendments, SIF was the most effective at decreasing As bioaccessibility in soils. Compared with RS and WTS, SIF intensified the decrease of labile fractions and the increase of unlabile fractions, and the redistribution of the amorphous oxide-bound fraction (F3) and crystalline hydrous oxide-bound fraction (F4) occurred in the SIF-amended soil. Moreover, the As stabilization processes were divided into two stages in the control and RS-amended soil, while the processes were divided into three stages in both SIF- and WTS-treated soil. The As stabilization processes in all treated soils were characterized by the transformation of labile fractions into more immobilizable fractions, except for F4 transforming into F3 in the first stage in SIF-amended soil. Correspondingly, inner-surface complexation and occlusion within Fe/Al hydroxides were the common driving mechanisms for the transformation of As fractions. Therefore, taking into consideration the results of this study, SIF could be a more promising alternative than the other two materials to passivate As in anoxic soils.


Asunto(s)
Aluminio/química , Arsénico/análisis , Hierro/química , Contaminantes del Suelo/análisis , Suelo/química
3.
Water Environ Res ; 88(2): 99-106, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26803098

RESUMEN

Groundwater quality assessment is essential for drinking from a security point of view. In this paper, a new evaluation method called toxicity combined fuzzy evaluation (TCFE) has been put forward, which is based on the fuzzy synthetic evaluation (FSE) method and the toxicity data from Agency for Toxic Substances and Disease Registry. The comparison of TCFE and FSE in the groundwater quality assessment of Guangzhou region also has been done. The assessment results are divided into 5 water quality levels; level I is the best while level V is the worst. Results indicate that the proportion of level I, level II, and level III used by the FSE method was 69.33% in total. By contrast, this proportion rose to 81.33% after applying the TCFE method. In addition, 66.7% of level IV samples in the FSE method became level I (50%), level II (25%), and level III (25%) in the TCFE method and 29.41% of level V samples became level I (50%) and level III (50%). This trend was caused by the weight change after the combination of toxicity index. By analyzing the changes of different indicators' weight, it could be concluded that the better-changed samples mainly exceeded the corresponding standards of regular indicators and the deteriorated samples mainly exceeded the corresponding standards of toxic indicators. The comparison between the two results revealed that the TCFE method could represent the health implications of toxic indicators reasonably. As a result, the TCFE method is more scientific in view of drinking safety.


Asunto(s)
Agua Subterránea/análisis , Contaminantes del Agua/análisis , Calidad del Agua , China , Monitoreo del Ambiente , Lógica Difusa
4.
Water Environ Res ; 85(4): 354-62, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23697240

RESUMEN

Groundwater quality is the critical factor that affects human health and the quality of industrial products in Foshan City, South China. Multivariate statistical techniques, including hierarchical cluster analysis (HCA) and principal component analysis (PCA), were applied to evaluate and interpret the complex groundwater quality in eastern Chancheng district, Foshan City. During the dry and wet seasons, 60% and 11% of the total groundwater samples (respectively) are suitable for drinking purposes; other samples can be used for drinking after being treated for pH, Fe, Mn, Al, NH4, and NO3. Similarly, during the dry and wet seasons, 75% and 33% of the total groundwater samples (respectively) are suitable for industrial purposes; other samples can be used for industrial purposes after being treated for NH4 and NO3. Five principal components are extracted from PCA and used to explain 81.78% of the variance in groundwater. The indicators to groundwater quality assessment are EC, Na, Cl, Fe, Mn, NH4, pH, Eh, PO4, HCO3, and K from PCA. HCA reveals that groundwater samples in the study area can be classified into three groups: one reflecting the interaction of groundwater and sediment medium along with the role of cation exchange; another reflecting the role of anion exchange between phosphate and carbonate; and the final reflecting the reducing environment.


Asunto(s)
Agua Subterránea/análisis , Calidad del Agua , China , Monitoreo del Ambiente , Análisis de Componente Principal , Estaciones del Año , Contaminantes Químicos del Agua/análisis
5.
Environ Pollut ; 316(Pt 2): 120592, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336180

RESUMEN

Identifying nitrate sources and their temporal evolution in different land use is important for the sustainable management of groundwater resources. In this study, groundwater dating (3H-3He and time series of 3H) was combined with chemical and stable isotope analyses to resolve the evolution of nitrate sources and the driving mechanism of nitrate contamination. Approximately 75% of the groundwater samples (collected in 2014 and 2018) had nitrate concentrations exceeding World Health Organization's guideline for drinking water (50 mg/L), and 44% exceeded the groundwater quality standard of China (88.6 mg/L), indicating severe nitrate pollution. The shift of nitrate sources in different land use was identified using stable isotope composition of nitrate and groundwater age. The decreasing median value of δ15N from 10.6‰ to 7.5‰ of dated groundwater in farmland irrigated by clean water indicated the shift of nitrate sources from manure toward the mixing of fertilizer and manure due to the increased application of chemical fertilizers from intensive plant farming since 1980s. Comparably, the trend of increasing δ15N (the median value from 7‰ to 12‰) in farmland irrigated by wastewater might be attributed to the decreasing proportion of industrial wastewater since 2000s. The prevailing sources of nitrate in residential area were manure and sewage, and showed no obvious change along the recharge time. Driven by rapid urbanization, the nitrate sources of land use change area exhibited a marked shift from inorganic fertilizers toward manure and sewage. Principal component analysis (PCA) on nitrate concentrations with multiple parameters indicated nitrogen input in agricultural development and urbanization were the main controlling factors of nitrate contamination in the study area. The study results are a good reference for groundwater management in regions with nitrate source change during the process of rapid urbanization and agricultural intensification. The coupling of chemical, isotopic analyses and groundwater dating proved to be invaluable and should be applied in similar studies of nitrate contamination.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Fertilizantes/análisis , Aguas del Alcantarillado/análisis , Estiércol/análisis , Aguas Residuales/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Isótopos de Nitrógeno/análisis , Agua Subterránea/química , Óxidos de Nitrógeno/análisis , China
6.
Environ Pollut ; 335: 122382, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586681

RESUMEN

Assessing natural background levels (NBLs) in groundwater is a global concern. Knowledge on groundwater NBLs in urbanized areas is challenging due to the impact of complex human activities. Preselection related methods are common ones for assessing groundwater NBLs. The present study used three preselection related methods to assess groundwater heavy metals (lead, zinc, barium) NBLs in four groundwater units of the Pearl River Delta (PRD) where urbanization continues, and to identify the best one for assessing groundwater NBLs in urbanized areas. Here, methods include a preselection method (method-P), a preselection dominated method (method-PD), and a statistic dominated method (method-SD). Results showed that the method-PD was better than other two methods for assessing groundwater NBLs of heavy metals in the PRD. This is supported by the evidence that differences among heavy metals concentrations in various land-use types in residual datasets formed by the method-PD were insignificant. NBLs of lead in groundwater units I to IV assessed by the method-PD were 2.8 µg/L, 5.9 µg/L, 5.8 µg/L, and 2.6 µg/L, respectively. NBLs of zinc in groundwater units I to IV assessed by the method-PD were 30 µg/L, 180 µg/L, 160 µg/L, and 100 µg/L, respectively. NBLs of barium in groundwater units I to IV assessed by the method-PD were 120 µg/L, 120 µg/L, 90 µg/L, and 50 µg/L, respectively. Compared to the method-PD, the method-SD often underestimates groundwater NBLs of heavy metals because of using the experiential evaluation for residual datasets. The method-P also has an inaccurate evaluation of groundwater NBLs of heavy metals in comparison with the method-PD, owing to both of using the experiential evaluation and the absence of a function for outliers test. The method-P combining with an outliers test would be better than itself for assessing groundwater NBLs. Therefore, the method-PD is the first choice to be recommended for assessing groundwater NBLs in urbanized areas such the PRD. However, this method should not be taken into account for assessing groundwater NBLs in areas where groundwater Cl/Br mass ratios are invalid. Instead, the method-SD and the method-P combining with one outliers test may be choices, because no constraint for these two methods.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Ríos , Contaminantes Químicos del Agua/análisis , Bario , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Zinc
7.
J Contam Hydrol ; 254: 104130, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36603301

RESUMEN

Aluminium(Al)-rich (> 0.2 mg/L) groundwater has received more concerns because of its harmful to human beings. Origins of large-scale occurrence on Al-rich groundwater in urbanized areas such as the Pearl River Delta (PRD) are still little known. The current work was conducted to investigate spatial distribution of Al-rich groundwater in the PRD, and to discuss its origins in various aquifers. For that, 265 groundwater samples and 15 river water samples were collected, and 21 hydrochemical parameters including Al were analyzed by using conventional analytical procedures. The results showed that groundwater Al concentrations were up to 22.64 mg/L, and Al-rich groundwater occurred in 15% of the area occupied by the PRD. Al-rich groundwater in the coastal-alluvial aquifer was about 2 times those in alluvial-proluvial and fissured aquifers, whereas the karst aquifer was absent. In the coastal-alluvial aquifer, Al-rich groundwater in the peri-urban area was 2 or more times those in urbanized and agricultural areas, whereas the remaining area was absent. By contrast, in the alluvial-proluvial aquifer, Al-rich groundwater in the remaining area was 1.5-3.5 times that in other areas; in the fissured aquifer, the distribution of Al-rich groundwater was independent of land-use types. The infiltration of wastewater from township enterprises was main anthropogenic source for Al-rich groundwater in urbanized and peri-urban areas, whereas irrigation of Al-rich river water was the main one in the agricultural area. Naturally dissolution of Al-rich minerals in soils/rocks, triggered by both of pH decrease resulted from nitrification of contaminated ammonium (e.g., sewage leakage, the use of nitrogen fertilizer) and acid deposition, was the main geogenic source for Al-rich groundwater in the PRD. The contribution of anthropogenic sources to Al-rich groundwater in the coastal-alluvial aquifer was more than that in alluvial-proluvial and fissured aquifers, whereas the contribution of geogenic sources was opposite. In conclusion, the discharge of township enterprises wastewater and ammonium-rich sewage, the emission of nitrogen-containing gas, and the use of nitrogen fertilizer should be preferentially limited to decrease the occurrence of Al-rich groundwater in urbanized areas such as the PRD.


Asunto(s)
Compuestos de Amonio , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Ríos , Aluminio , Urbanización , Aguas del Alcantarillado , Aguas Residuales , Fertilizantes , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua , Nitrógeno
8.
Sci Total Environ ; 857(Pt 2): 159527, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270365

RESUMEN

Knowledge on driving forces controlling natural background levels (NBLs) of geogenic contaminants (GCs) in groundwater of coastal urbanized areas are still limited because of complex hydrogeological conditions and anthropogenic activities. This study assesses NBLs of two GCs including arsenic (As) and manganese (Mn) in four groundwater units of the Pearl River Delta (PRD) with large scale urbanization by using a preselection method composed of the chloride/bromide mass ratio versus chloride concentration and the oxidation capacity with the combination of Grubbs' test. More importantly, driving factors controlling NBLs of As/Mn in groundwater of the PRD are discussed. Results showed that groundwater As/Mn concentrations in residual datasets were independent of land-use types, while those in original datasets in different land-use types were distinct because of various human activities, indicating that the used preselection method in this study is valid for NBLs-As/Mn assessment in groundwater of the PRD. NBL-As in coastal-alluvial aquifers was >6 times that in other groundwater units. NBL-Mn in coastal-alluvial aquifers was 1.4 times that in alluvial-proluvial aquifers, and both were >4 times that in other two groundwater units. High NBLs-As/Mn in coastal-alluvial aquifers is mainly attributed to reduction of FeMn oxyhydr(oxides) induced by mineralization of organic matter in Quaternary sediments. Elevated pH also contributes higher NBL-As in coastal-alluvial aquifers. By contrast, higher NBL-Mn in alluvial-proluvial aquifers than in other two groundwater units mainly ascribes to reduction of FeMn oxyhydr(oxides) in Quaternary sediments triggered by irrigation of reducing river waters. In addition, more occurrence of As/Mn-rich sediments and the infiltration of As/Mn-rich river water are also important factors for high NBLs-As/Mn in coastal-alluvial aquifers. This study shows that revealing natural driving factors of GCs-rich groundwater in coastal urbanized areas on the basis of identification of contaminated groundwaters via the used preselection methods is acceptable.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente , Cloruros , Contaminantes Químicos del Agua/análisis , Arsénico/análisis , Manganeso , Óxidos
9.
Sci Total Environ ; 813: 151890, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34822899

RESUMEN

Establishment of natural background levels (NBL) of groundwater in urbanized areas such as the Pearl River Delta (PRD) is challenging. Pre-selection methods are the most common approaches for NBL assessment, but it will overestimate (or underestimate) contaminated groundwater in urbanized areas by using present pre-selection methods with empirical definite values because of complicated human activities. Unlike present pre-selection methods, this study aims to establish a new pre-selection method with the indicative of Cl/Br ratios to identify contaminated groundwaters with convincing evidences. Specifically, this new method consists of indicatives of the oxidation capacity and the Cl/Br ratio combining with contaminated-markers. In addition, factors controlling NBL of Cl and NO3 in groundwater in various hydrogeological units in the PRD were also discussed. Main procedures of this new method: contaminated-markers in various hydrogeological units are extracted by a hierarchical cluster analysis, thereby determining threshold values of Cl/Br ratios and Cl concentration in various hydrogeological units for identifying contaminated groundwater; After that, groundwater chemical datasets was selected by the oxidation capacity, and then tested by Grubbs' test until normal distributions. Groundwater Cl and NO3 concentrations in datasets before and after this new method are dependent and independent of urbanization levels, respectively, indicating that the new method is useful for groundwater NBL assessment in urbanized areas such as the PRD. Both the seawater intrusion and the diffusion of Cl from marine deposits are likely to be responsible for the much higher NBL-Cl in coastal-alluvial and marine aquifers than in other hydrogeological units. Groundwater Cl enrichment resulted from groundwater recharge and evaporation is mainly responsible for the higher NBL-Cl in alluvial-proluvial aquifers than in lacustrine aquifers, fissured aquifers, as well as karst aquifers. More than double times NBL-NO3 in alluvial-proluvial and fissured aquifers than in other hydrogeological units is probably attributed to more oxidizing conditions of their vadose zones and groundwaters.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Ríos , Urbanización , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 829: 154676, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35314226

RESUMEN

Fe-rich (>0.3 mg/L) groundwater is generally present in areas where organic matter-rich fluvial, lacustrine, or marine sedimentary environments occur. The Pearl River Delta (PRD) that marine sediments is common, where a large scale of Fe-rich groundwater was distributed but disappearing in recent decade. This study aims to investigate the change of Fe-rich groundwater in the PRD, and to discuss the genesis controlling Fe-rich groundwater in the PRD during the past dozen years. A total of 399 and 155 groundwater samples were collected and analyzed at 2006 and 2018, respectively. Results showed that Fe-rich groundwater of the PRD was from 19.3% at 2006 dropped to 1.3% at 2018. Fe-rich groundwater in coastal-alluvial aquifers was more than 2 times that in other aquifers at 2006. Both of anthropogenic and geogenic sources were contributed to the widely distribution of Fe-rich groundwater in the PRD at 2006. The infiltration of industrial wastewater and the irrigation of Fe-rich surface water were the major anthropogenic driving forces for the occurrence of Fe-rich groundwater in the PRD at 2006. The reductive dissolution of Fe minerals in aquifer sediments, associated with the degradation of organic matter in marine sediments and the sewage infiltration, was the main driving force for the enrichment of groundwater Fe in coastal-alluvial aquifers at 2006. The intrusion of sewage triggering the reductive dissolution of Fe minerals in terrestrial sediments and the reductive dissolution of Fe minerals in carbon-rich rocks induced by sewage leakages were the major driving forces for the occurrence of Fe-rich groundwater in alluvial-proluvial and fissured aquifers at 2006. All these driving forces were weaker or even not work at 2018 because of the large decrease of untreated wastewater discharge in the PRD during 2006-2018. Therefore, limiting untreated wastewater discharge is the first choice to improve the groundwater quality in urbanized areas.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Monitoreo del Ambiente , Hierro , Ríos , Aguas del Alcantarillado , Aguas Residuales , Contaminantes Químicos del Agua/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-35329022

RESUMEN

Cadmium (Cd)-contaminated paddy soils are a big concern. However, the effect of irrigation with acid water on the migration and transformation of Cd and the effect of alternating redox conditions caused by intermittent irrigation on Cd aging processes in different depths of paddy soils are unclear. This study revealed Cd fractionation and aging in a Cd-contaminated paddy soil under four irrigation periods with acid water and four drainage periods, by applying a soil columns experiment and a sequential extraction procedure. The results showed that the dynamic changes of soil pH, oxidation reduction potential (ORP), iron (Fe) oxides and dissolved organic carbon (DOC) throughout the intermittent irrigation affected the transformation of Cd fractions. After 32 days, the proportion of exchangeable Cd (F1) to the total Cd decreased with a reduction of 24.4% and 20.1% at the topsoil and the subsoil, respectively. The labile fractions of Cd decreased, and the more immobilizable fractions of Cd increased in the different depths of soils due to the aging process. Additionally, the redistribution of the Fe and Mn oxide-bound Cd (F3) and organic matter and secondary-sulfide-bound Cd (F4) occurred at different depths of soils during the incubation time. Overall, the bioaccessibility of Cd in the subsoil was higher than that in the topsoil, which was likely due to the leaching and accumulation of soluble Cd in the deep soil. In addition, the aging processes in different depths of soils were divided into three stages, which can be mainly described as the transformation of F1 into F3 and F4.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Contaminación Ambiental , Óxidos , Suelo , Contaminantes del Suelo/análisis , Agua
12.
Environ Sci Pollut Res Int ; 29(12): 17031-17048, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34657263

RESUMEN

High concentration of nitrate (NO3-) in groundwater is a major concern because of its complex origin and harmful effects on human health. This study aims to investigate the distributions of nitrate in various aquifers and in areas with different land use types in alluvial-pluvial fans in North China Plain, to identify dominant sources and factors using hydrochemical data and principal component analysis, and to conduct health-risk assessment of groundwater nitrate using the models recommended by USEPA. Results show that approximately 76.1% groundwater in fissured aquifers showed high-NO3- (> 50 mg/L), and was 2.7 times of that in granular aquifers. In fissured aquifers, the proportion of high-NO3- groundwater (PHNG-WHO) in peri-urban areas was more than 1.3 times of those in other areas. Similarly, in shallow granular aquifers, the PHNG-WHO in peri-urban areas was also higher than that in other areas. By contrast, in deep granular aquifers, the PHNG-WHO in urbanized areas was 2.8 and 5.2 times of that in peri-urban areas and farmland, respectively. High NO3- levels in both granular and fissured aquifers originated mainly from domestic sewage and animal waste, and fertilizers are also important sources of NO3- in fissured aquifers. Intensive groundwater exploitation aggravated nitrate contamination because more thickness of vadose zones resulting from over-exploitation is in favor of nitrification. Risk assessment of groundwater nitrate indicated about 43.3%, 45.6%, and 54.2% of the groundwater samples showed unacceptable non-carcinogenic risk to adult males, adult females, and children, respectively. The proportion of samples with health risks had a significant positive correlation with the urbanization level. Our study indicates that several effective measures for pollution prevention, such as strengthening sewage treatment and prohibiting groundwater over-exploitation, must be adopted so as to ensure the sustainable management of groundwater and the safety of drinking water.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Agua Subterránea/análisis , Humanos , Nitratos/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
13.
Artículo en Inglés | MEDLINE | ID: mdl-34831911

RESUMEN

Efficient identification of groundwater contamination is a major issue in the context of groundwater use and protection. This study used a new approach of multi-hydrochemical indicators, including the Cl-Br mass ratio, the hydrochemical facies, and the concentrations of nitrate, phosphate, organic contaminants, and Pb in groundwater to identify groundwater contamination in the Pearl River Delta (PRD) where there is large scale urbanization. In addition, the main factors resulting in groundwater contamination in the PRD were also discussed by using socioeconomic data and principal component analysis. Approximately 60% of groundwater sites in the PRD were identified to be contaminated according to the above six indicators. Contaminated groundwaters commonly occur in porous and fissured aquifers but rarely in karst aquifers. Groundwater contamination in porous aquifers is positively correlated with the urbanization level. Similarly, in fissured aquifers, the proportions of contaminated groundwater in urbanized and peri-urban areas were approximately two times that in non-urbanized areas. Groundwater contamination in the PRD was mainly attributed to the infiltration of wastewater from township-village enterprises on a regional scale. In addition, livestock waste was also an important source of groundwater contamination in the PRD. Therefore, in the future, the supervision of the wastewater discharge of township-village enterprises and the waste discharge of livestock should be strengthened to protect against groundwater contamination in the PRD.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Nitratos/análisis , Ríos , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Pollut Res Int ; 27(1): 190-209, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31838692

RESUMEN

As the most important graphene derivate, graphene oxide (GO) is a high-efficient adsorbent for the removal of heavy metals in aquatic environment due to its abundant oxygen functional groups, enormous specific area, and strong hydrophilia. However, there are some drawbacks, such as easily aggregating and difficult separation, restricting the environmental application of GO. GO is not a suitable adsorbent by itself. Hence, some materials were used to synthesize GO composites, and GO composites are commonly characterized by high adsorption capacity to overcome the above drawbacks. This review discusses five main GO composites-GO-chitosan, GO-alginate, GO-SiO2, NZVI-rGO, and magnetic GO composites-and summarizes the synthesis methods of GO composites and its application for the removal of heavy metals in aquatic environments. The influencing factors, adsorption capacities, and mechanisms related to the removal of heavy metals by GO composites are highlighted. Lastly, the application potentials and challenges of GO composites for aqueous environmental remediation are discussed. Graphical abstract.


Asunto(s)
Restauración y Remediación Ambiental , Grafito/química , Metales Pesados/química , Contaminantes Químicos del Agua/química , Adsorción , Quitosano , Magnetismo , Dióxido de Silicio , Agua
15.
Environ Pollut ; 260: 114079, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32014754

RESUMEN

The fate of phosphorus in groundwater needs to be understood because phosphorus-rich groundwater is discharged into surface water bodies, which causes eutrophication, especially in urbanized areas. The present study investigated the spatial distributions and driving forces related to the groundwater phosphate levels in various aquifers in the Pearl River Delta (PRD), which has undergone three decades of urbanization, as well as the relationship between groundwater phosphate and arsenic was also discussed. The results showed that most of the high-phosphate (>1.53 mg/L) groundwater occurred in granular aquifers. The proportion of high-phosphate groundwater in granular aquifers was more than four times that in fissured aquifers, whereas high-phosphate groundwater was not observed in karst aquifers in the PRD. High-phosphate groundwater primarily occurred in urbanized areas in the PRD, and the proportion of high-phosphate groundwater had a significant positive correlation with the urbanization level. In granular aquifers, reductive environment and alkalization led to enrichment of the groundwater with phosphate. Anthropogenic sources such as wastewater from township-village enterprises (TVE) and animal wastes were the main sources of high-phosphate groundwater in urbanized areas, and the external input of phosphate enriched the groundwater arsenic levels in urbanized areas. By contrast, geogenic sources such as the release of phosphate from the reduction of Fe/Mn (hydr)oxides and the seawater intrusion accompanied by the release of phosphate from secondary minerals were mainly responsible for the occurrence of high-phosphate groundwater in peri-urban and non-urbanized areas, respectively. The high concentrations of both phosphate and arsenic in groundwater in fissured aquifers were mainly attributed to the infiltration of wastewater from TVEs. In contrast to the granular aquifers, the groundwater Eh and pH conditions were not conductive to the occurrence of high-phosphate groundwater in fissured aquifers.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Fósforo/análisis , Contaminantes Químicos del Agua , Arsénico , Ríos
16.
Sci Total Environ ; 701: 134777, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31704411

RESUMEN

High concentration of manganese (Mn) in groundwater is a major concern because of its harmful to human health, and the origin of which in urbanized areas is often complicated. The present study aims to delineate spatial distributions of groundwater Mn in various aquifers and in areas with different urbanization levels in the Pearl River Delta (PRD), and to identify the origins of groundwater Mn in this region. Nearly 400 groundwater samples collected, and 14 chemicals were analyzed. The results show that approximately 20% groundwater in granular aquifers showed elevated-Mn (>0.4 mg/L), and was more than two times of that in fissured aquifers, while that in karst aquifers was absent. The proportions of elevated-Mn groundwater in urbanized areas and peri-urban areas were higher than that in non-urbanized areas. The decomposition of organic matter and reduction of Fe (hydr)oxides in sediments with reducing condition was likely to be the main factor controlling elevated-Mn groundwater in granular aquifers at a regional scale. By contrast, elevated-Mn groundwater in fissured aquifers was likely mainly affected by the urbanization accompanied with the leakage of low-oxygen domestic sewage and the industrialization accompanied by the leakage of industrial wastewater. In addition, Mn-rich surface water was also probably an important source for groundwater Mn in river network areas. Therefore, it is necessary to make a long-term monitoring for groundwater Mn in granular aquifers, especially in urbanized areas and river network areas, because of the high proportion of elevated-Mn.

17.
Sci Total Environ ; 635: 913-925, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29710613

RESUMEN

Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO3-. In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for heavy metal(loid)s and organic contaminants in groundwater in the PRD.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , China , Agua Subterránea/química , Desarrollo Industrial , Urbanización/tendencias
18.
Sci Total Environ ; 625: 510-518, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29291565

RESUMEN

A growing population accompanied by urbanization has increased groundwater resource demands in the Pearl River Delta (PRD) area, southern China, and a comprehensive understanding of the groundwater chemistry in the PRD is necessary. The aims of this study were to investigate the groundwater chemistry in various aquifers in the PRD on a regional scale and to discuss the factors that control the groundwater chemistries of different types of aquifers. In addition, the effect of the expansion of construction land on the groundwater chemistry was also taken into consideration in this study. Nearly 400 groundwater samples were collected and fourteen chemical parameters were investigated. The results show that natural factors, such as seawater intrusions, are mainly responsible for the higher concentrations of total dissolved solids, Na+, Mg2+, K+, and Cl-, in granular aquifers than those in fissured and karst aquifers. Similarly, higher concentrations of NH4+, Fe and Mn in granular aquifers than those in the other two types of aquifers are mainly ascribed to natural reduction. In contrast, human activities, such as the continuous irrigation of river water, upon granular aquifer are mainly responsible for the higher concentrations of Ca2+ and HCO3- in granular aquifers than those in other two types of aquifers. Urbanization and industrialization are the main driving forces for the frequently occurrences of NO3 and SO4 water types, respectively. Moreover, the number of water types in the PRD increased to 89 after the decades of urbanization. Factors that control groundwater chemistries in various aquifers were extracted. A four-factor model controlled the groundwater chemistry of granular aquifers, while two three-factor models controlled the groundwater chemistries of fissured and karst aquifers, respectively. The results of this study show that the expansion of construction land is a powerful driving force for the change of groundwater chemistry in the PRD.

19.
Environ Sci Pollut Res Int ; 23(5): 4594-601, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26520097

RESUMEN

The present study focused on the influence of temperature variation on the aging mechanisms of arsenic in soils. The results showed that higher temperature aggravated the decrease of more mobilizable fractions and the increase of less mobilizable or immobilizable fractions in soils over time. During the aging process, the redistribution of both carbonate-bound fraction and specifically sorbed and organic-bound fraction in soils occurred at various temperatures, and the higher temperature accelerated the redistribution of specifically sorbed and organic-bound fraction. The aging processes of arsenic in soils at different temperatures were characterized by several stages, and the aging processes were not complete within 180 days. Arsenic bioaccessibility in soils decreased significantly by the aging, and the decrease was intensified by the higher temperature. In terms of arsenic bioaccessibility, higher temperature accelerated the aging process of arsenic in soils remarkably.


Asunto(s)
Arsénico/química , Contaminantes del Suelo/química , Suelo/química , Arsénico/metabolismo , Disponibilidad Biológica , Temperatura , Factores de Tiempo
20.
Water Res ; 102: 313-320, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27379727

RESUMEN

Broad applications of graphene oxide (GO) will result in the release of GO into aquatic environments, where clay minerals and metal (hydr)oxides are commonly present. Thereby the interactions between GO and a binary system containing clay minerals and metal (hydr)oxides can occur. We investigated the aggregation of GO with kaolinite and kaolinite-goethite associations (KGAs) in aquatic systems under different pHs, ionic strengths, and GO concentrations. GO suspension was unstable at low pHs, and the aggregation of GO occurred in the presence of KGA-4% and KGA-10% until pH 5 and 6, respectively. Kaolinite decreased the critical coagulation concentration (CCC) of GO at pH 5.5 from around 50 to 20 mM NaCl due to the reduced energy barrier. Heteroaggregation of GO with KGAs was extremely sensitive to ionic strength at pH 5.5, and the CCC of GO in the presence of KGA-10% increased from less than 1 mM NaCl to 5 mM NaCl with the increase of pH from 5.5 to 9. The heteroaggregation extent of GO with KGAs was enhanced firstly, then reduced with the increase of GO concentrations at pH 5.0, which is likely because KGA plates were more efficiently wrapped by large-size GO sheets with increasing GO concentrations. These findings are useful for understanding and predicting the fate of GO in the relatively complicated aquatic and soil environments where binary minerals co-exist.


Asunto(s)
Grafito , Caolín , Concentración Osmolar , Óxidos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA