Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Liver Int ; 43(4): 865-877, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36627827

RESUMEN

BACKGROUND AND AIMS: Antibiotics (ATBx) and acetaminophen (APAP) are widely used worldwide. APAP is the most common cause of acute liver injury (ALI) and might be used in combination with ATBx in clinics. However, the impact of ATBx on APAP-induced ALI has rarely been studied. METHODS: First, we compared the effects of seven ATBx on APAP-induced ALI. Then, we analysed faecal, serum and liver samples to investigate the impact of the gut microbiota on this process. Finally, we assessed the role of short-chain fatty acids in this process. RESULTS: In this work, we found that the ALI was significantly aggravated in the mice treated with ampicillin (Amp) instead of other ATBx. Amp exposure reduced the diversity and altered the composition of gut microbiota. The altered gut microbiota aggravated APAP-induced ALF, which was proven by faecal microbiota transplantation from ATBx-treated mice. Metagenomic analysis showed a significantly decreased Lactobacillus abundance in Amp-treated mice. Gavage with Lactobacillus, especially Lactobacillus rhamnosus, significantly reversed the severer ALF induced by APAP and Amp. Moreover, Lactobacillus supplementation increased butyrate-producing clostridia and lowered butyrate levels in Amp-treated mice. In accordance, butyrate supplementation could also alleviate Amp-aggravated ALI. In addition, inhibition of nuclear factor erythroid 2-related factor 2 counteracted the protective effect of butyrate on aggravated ALI induced by Amp and APAP. CONCLUSION: Together, this study revealed a potential health impact of Amp that may exacerbate liver damage when co-exposed to excess APAP.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Animales , Ratones , Acetaminofén/toxicidad , Butiratos/farmacología , Hígado , Ampicilina/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Ratones Endogámicos C57BL
2.
Pharmacol Res ; 196: 106902, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37657657

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the major cause of liver dysfunction. Animal and population studies have shown that mitochondrial aldehyde dehydrogenase (ALDH2) is implicated in fatty liver disease. However, the role of ALDH2 in NASH and the underlying mechanisms remains unclear. To address this issue, ALDH2 knockout (ALDH2-/-) mice and wild-type littermate mice were fed a methionine-and choline-deficient (MCD) diet to induce a NASH model. Fecal, serum, and liver samples were collected and analyzed to investigate the impact of the gut microbiota and bile acids on this process. We found that MCD-fed ALDH2-/- mice exhibited increased serum pro-inflammation cytokines, hepatic inflammation and fat accumulation than their wild-type littermates. MCD-fed ALDH2-/- mice exhibited worsened MCD-induced intestinal inflammation and barrier damage, and gut microbiota disorder. Furthermore, mice receiving microbiota from MCD-fed ALDH2-/- mice had increased severity of NASH compared to those receiving microbiota from MCD-fed wild-type mice. Notably, the intestinal Lactobacillus was significantly reduced in MCD-fed ALDH2-/- mice, and gavage with Lactobacillus cocktail significantly improved MCD-induced NASH. Finally, we found that ALDH2-/- mice had reduced levels of bile salt hydrolase and specific bile acids, especially lithocholic acid (LCA), accompanied by downregulated expression of the intestinal FXR-FGF15 pathway. Supplementation of LCA in ALDH2-/- mice upregulated intestinal FXR-FGF15 pathway and alleviated NASH. In summary, ALDH2 plays a critical role in the development of NASH through modulation of gut microbiota and bile acid. The findings suggest that supplementing with Lactobacillus or LCA could be a promising therapeutic approach for treating NASH exacerbated by ALDH2 deficiency.

3.
Pharmacol Res ; 170: 105726, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34126228

RESUMEN

Calorie restriction can modulate the gut microbiota and protect against many diseases including ischemic stroke. However, the role of calorie-restriction-induced microbiota alteration remained unknown in ischemic stroke rehabilitation. Here we conducted 30% reduction of caloric intake on mice for four weeks, to evaluate its role on ischemic stroke rehabilitation. Significantly, this calorie restriction led to better long-term rehabilitation in comparison of normal control. Notably, the transplantation of gut microbiome from calorie-restriction-treated mice to post-stroke mice was eligible to obtain better long-term rehabilitation of stroke mice. Bifidobacterium identified by 16 S ribosomal RNA sequencing were enriched in those of calorie-restriction mice. Then we administrated Bifidobacterium to stroke mice and found Bifidobacterium treatment could successfully improve the long-term rehabilitation of cerebral ischemia mice. Furthermore, the metabolomics analysis revealed a panel of upshifting metabolites, suggesting that calorie restriction greatly altered the gut microbiota composition and its metabolism. Hence, we discovered the novel effect of CR on long-term rehabilitation of ischemic stroke and the underlying role of gut microbiota, which might provide novel thoughts for the clinical post-stroke rehabilitation.


Asunto(s)
Bacterias/crecimiento & desarrollo , Eje Cerebro-Intestino , Encéfalo/fisiopatología , Restricción Calórica , Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico/rehabilitación , Rehabilitación de Accidente Cerebrovascular , Animales , Bacterias/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/microbiología , Accidente Cerebrovascular Isquémico/fisiopatología , Ratones , Recuperación de la Función , Factores de Tiempo
4.
Front Microbiol ; 14: 1123444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125159

RESUMEN

Introduction: Lactation mastitis seriously severely affects the health of lactating females and their infants, yet the underlying causes of clinical lactation mastitis remain unclear. Methods: In this study, we used microbiota-humanized mice as a model to investigate the role of gut microbiota in lactation mastitis. We compared the fecal microbiota of lactation mastitis patients and healthy individuals and conducted fecal microbiota transplantation (FMT) experiments in an antibiotic-pretreated mouse model to test whether gut microbes contribute to human lactation mastitis. Results: Our results showed that gut microbiota diversity was reduced and dysbiosis was present in lactating mastitis patients. FMT from lactation mastitis patients (M-FMT), but not from healthy individuals (H-FMT), to antibiotic-treated mice resulted in lactation mastitis. The inflammation in mice caused by gut microbiota from lactating mastitis patients appears to be pervasive, as hepatocytes from mice that received feces from lactating mastitis patients showed marked swelling. In addition, serum pro-inflammatory factors, including IL-4, IL-17, MPO, IL-6, IL-1ß, and TNF-α, were significantly increased in the M-FMT group. The Firmicutes/Bacteroidetes ratio (F/B), a biomarker of gut dysbiosis, was significantly increased in the M-FMT group. At the phylum level, Actinobacteria were significantly increased, and Verrucomicrobia were significantly decreased in the M-FMT group. At the genus level, Ruminococcus and Faecalibacterium were significantly reduced, while Parabacteroides were significantly increased in the feces of both patients with lactation mastitis and M-FMT mice. Moreover, our study revealed an "amplification effect" on microbiota differences and mastitis disease following human-to-mouse FMT. Conclusion: Collectively, our findings demonstrate that the gut microbiota in lactating mastitis patients is dysbiotic and contributes to the pathogenesis of mastitis.

5.
Nat Metab ; 5(1): 96-110, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646754

RESUMEN

Calorie restriction (CR) and intermittent fasting (IF) without malnutrition reduce the risk of cancer development. Separately, CR and IF can also lead to gut microbiota remodelling. However, whether the gut microbiota has a role in the antitumour effect related to CR or IF is still unknown. Here we show that CR, but not IF, protects against subcutaneous MC38 tumour formation through a mechanism that is dependent on the gut microbiota in female mice. After CR, we identify enrichment of Bifidobacterium through 16S rRNA sequencing of the gut microbiome. Moreover, Bifidobacterium bifidum administration is sufficient to rescue the antitumour effect of CR in microbiota-depleted mice. Mechanistically, B. bifidum mediates the CR-induced antitumour effect through acetate production and this effect is also dependent on the accumulation of interferon-γ+CD8+ T cells in the tumour microenvironment. Our results demonstrate that CR can modulate the gut taxonomic composition, which should be of oncological significance in tumour growth kinetics and cancer immunosurveillance.


Asunto(s)
Restricción Calórica , Microbioma Gastrointestinal , Femenino , Animales , Ratones , Linfocitos T CD8-positivos , ARN Ribosómico 16S/genética
6.
Front Oncol ; 12: 1029033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465375

RESUMEN

Abnormal metabolic alterations of cancer cells and the host play critical roles in the occurrence and development of tumors. Targeting cancer cells and host metabolism can provide novel diagnosis indicators and intervention targets for tumors. In recent years, it has been found that gut microbiota is involved in the metabolism of the host and cancer cells. Increasingly, gut microbiome and their metabolites have been demonstrated great influence on the tumor formation, prognosis and treatment. Specific gut microbial composition and metabolites are associated with the status of tumor in the host. Interventions on the gut microbiota can exert the protective effects on the tumor, through the manipulation of structure and its related metabolites. This may be the new approach to improve the efficacy of tumor prevention and treatment. Here, we discuss the effects and the underlying mechanisms of gut microbiota and microbial-derived metabolites in tumor progression and treatment.

7.
J Inflamm Res ; 14: 6175-6190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853526

RESUMEN

BACKGROUND: Psoriasis is a chronic autoinflammatory skin disease, and its aetiology remains incompletely understood. Recently, gut microbial dysbiosis is found to be tightly associated with psoriasis. OBJECTIVE: We sought to reveal the causal role of gut microbiota dysbiosis in psoriasis pathogenesis and investigate the protective effect of healthy commensal bacteria against imiquimod -induced psoriasis-like skin response. METHODS: By using fecal microbial transplantation (FMT), 16S rRNA gene-based taxonomic profiling and Lactobacillus supplement, we have assessed the effect of FMT from healthy individuals on psoriasis-like skin inflammation and associated immune disorders in imiquimod-induced psoriasis mice. RESULTS: Here, by using psoriasis mice humanized with the stools from healthy donors and psoriasis patients, the imiquimod-induced psoriasis in mice with psoriasis patient stool was found to be significantly aggravated as compared to the mice with healthy donor stools. Further analysis showed fecal microbiota of healthy individuals protected against Treg/Th17 imbalance in psoriasis. Moreover, we found the gut and skin microbiome in mice receipted with gut microbiota of healthy individuals (HD) differed from those of mice receipted with gut microbiota of psoriasis patients (PSD). 16S rRNA sequencing revealed that Lactobacillus reuteri was greatly enriched in fecal and cutaneous microbiome of HD mice as compared to PSD mice. Intriguingly, supplement with Lactobacillus reuteri was sufficient to increase the expression of anti-inflammatory gene IL-10, reduce Th17 cells counts and confer resistance to imiquimod-induced inflammation on the mice with gut microbiota dysbiosis. CONCLUSION: Our results suggested that the gut microbiota dysbiosis is the potential causal factor for psoriasis and the gut microbiota may serve as promising therapy target for psoriasis patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA