Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Immunol ; 200(1): 130-138, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150565

RESUMEN

The reduction of synovial tissue macrophages is a reliable biomarker for clinical improvement in patients with rheumatoid arthritis (RA), and macrophages are reduced in synovial tissue shortly after initiation of TNF inhibitors. The mechanism for this initial response is unclear. These studies were performed to identify the mechanisms responsible for the initial reduction of macrophages following TNF inhibition, positing that efflux to draining lymph nodes was involved. RA synovial tissue and synovial fluid macrophages expressed CCR7, which was increased in control macrophages following incubation with TNF-α. Human TNF transgenic (hTNF-Tg) mice were treated with infliximab after development of arthritis. Ankles were harvested and examined by histology, immunohistochemistry, quantitative RT-PCR, ELISA, and flow cytometry. hTNF-Tg mice treated with infliximab demonstrated significant clinical and histologic improvement 3 d after the initiation of therapy, at which time Ly6C+ macrophages were significantly reduced in the ankles. However, no evidence was identified to support a role of macrophage efflux to draining lymph nodes following treatment with infliximab. In contrast, apoptosis of Ly6C+ macrophages in the ankles and popliteal lymph nodes, decreased migration of monocytes into the ankles, and a reduction of CCL2 were identified following the initiation of infliximab. These observations demonstrate that Ly6C+ macrophage apoptosis and decreased ingress of circulating monocytes into the joint are responsible for the initial reduction of macrophages following infliximab treatment in hTNF-Tg mice.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antirreumáticos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Infliximab/uso terapéutico , Macrófagos/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiotaxis/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
2.
Am J Physiol Cell Physiol ; 311(4): C673-C685, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27488671

RESUMEN

Calponin is an actin cytoskeleton-associated protein that regulates motility-based cellular functions. Three isoforms of calponin are present in vertebrates, among which calponin 2 encoded by the Cnn2 gene is expressed in multiple types of cells, including blood cells from the myeloid lineage. Our previous studies demonstrated that macrophages from Cnn2 knockout (KO) mice exhibit increased migration and phagocytosis. Intrigued by an observation that monocytes and macrophages from patients with rheumatoid arthritis had increased calponin 2, we investigated anti-glucose-6-phosphate isomerase serum-induced arthritis in Cnn2-KO mice for the effect of calponin 2 deletion on the pathogenesis and pathology of inflammatory arthritis. The results showed that the development of arthritis was attenuated in systemic Cnn2-KO mice with significantly reduced inflammation and bone erosion than that in age- and stain background-matched C57BL/6 wild-type mice. In vitro differentiation of calponin 2-null mouse bone marrow cells produced fewer osteoclasts with decreased bone resorption. The attenuation of inflammatory arthritis was confirmed in conditional myeloid cell-specific Cnn2-KO mice. The increased phagocytotic activity of calponin 2-null macrophages may facilitate the clearance of autoimmune complexes and the resolution of inflammation, whereas the decreased substrate adhesion may reduce osteoclastogenesis and bone resorption. The data suggest that calponin 2 regulation of cytoskeleton function plays a novel role in the pathogenesis of inflammatory arthritis, implicating a potentially therapeutic target.


Asunto(s)
Artritis/genética , Artritis/patología , Proteínas de Unión al Calcio/genética , Inflamación/genética , Inflamación/patología , Macrófagos/metabolismo , Proteínas de Microfilamentos/genética , Animales , Artritis/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Resorción Ósea/patología , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Eliminación de Gen , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Humanos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Monocitos/metabolismo , Monocitos/patología , Células Mieloides/metabolismo , Células Mieloides/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Fagocitosis/genética , Fagocitosis/fisiología , Calponinas
3.
Appl Opt ; 55(13): 3413-9, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27140349

RESUMEN

It is important to improve the depth resolution in depth-resolved wavenumber-scanning interferometry (DRWSI) owing to the limited range of wavenumber scanning. In this work, a new nonlinear iterative least-squares algorithm called the wavenumber-domain least-squares algorithm (WLSA) is proposed for evaluating the phase of DRWSI. The simulated and experimental results of the Fourier transform (FT), complex-number least-squares algorithm (CNLSA), eigenvalue-decomposition and least-squares algorithm (EDLSA), and WLSA were compared and analyzed. According to the results, the WLSA is less dependent on the initial values, and the depth resolution δz is approximately changed from δz to δz/6. Thus, the WLSA exhibits a better performance than the FT, CNLSA, and EDLSA.

4.
J Biol Chem ; 289(3): 1617-28, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24285540

RESUMEN

The essential role of mechanical signals in regulating the function of living cells is universally observed. However, how mechanical signals are transduced in cells to regulate gene expression is largely unknown. We previously demonstrated that the gene encoding h2-calponin (Cnn2) is sensitively regulated by mechanical tension. In the present study, mouse genomic DNA containing the Cnn2 promoter was cloned, and a nested set of 5' truncations was studied. Transcriptional activity of the Cnn2 promoter-reporter constructs was examined in transfected NIH/3T3, HEK293, and C2C12 cells for their responses to the stiffness of culture substrate. The results showed significant transcriptional activities of the -1.00- and -1.24-kb promoter constructs, whereas the -0.61-kb construct was inactive. The -1.38-, -1.57-, and -2.12-kb constructs showed higher transcriptional activity, whereas only the -1.57- and -2.12-kb constructs exhibited repression of expression when the host cells were cultured on low stiffness substrate. Internal deletion of the segment between -1.57 and -1.38 kb in the -2.12-kb promoter construct abolished the low substrate stiffness-induced repression. Site-specific deletion or mutation of an HES-1 transcription factor binding site in this region also abolished this repression effect. The level of HES-1 increased in cells cultured under a low tension condition, corresponding to the down-regulation of h2-calponin. h2-Calponin gene expression is further affected by the treatment of cells with Notch inhibitor and activator, suggesting an upstream signaling mechanism.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de Microfilamentos/biosíntesis , Regiones Promotoras Genéticas/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al Calcio , Eliminación de Gen , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células K562 , Ratones , Proteínas de Microfilamentos/genética , Células 3T3 NIH , Receptores Notch/genética , Factor de Transcripción HES-1 , Calponinas
5.
Rheumatology (Oxford) ; 52(6): 1101-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23382361

RESUMEN

OBJECTIVE: To evaluate telomere length (TL) between patients with SLE and healthy controls and to test if TL is associated with carotid plaque. METHODS: A pilot study of 154 patients with SLE and 152 controls was performed from the SOLVABLE (Study of Lupus Vascular and Bone Long-Term Endpoints) cohort. Demographic and cardiovascular disease (CVD) factors were collected at baseline. The presence or absence of plaque was evaluated by B-mode US. Genomic DNA was isolated from whole peripheral blood. TL was quantified using real-time quantitative PCR. RESULTS: SLE women had a short TL compared with healthy controls (4.57 vs 5.44 kb, P = 0.03). SLE women showed shorter TL than controls across all age groups: <35 years (4.38 vs 6.37 kb), 35-44 years (4.52 vs 5.30 kb), 45-54 years (4.77 vs 5.68 kb) and ≥55 years (4.60 vs 4.71 kb). Among patients with SLE and carotid plaque there was a trend towards shorter TL at a younger age and it was significantly lower in the 35- to 44-year age group when compared with controls (P = 0.025). Multiple logistic regression analysis indicated a risk of carotid plaque with older age [odds ratio (OR) 1.09; 95% CI 1.06, 1.12] but not with TL (OR 1.05; 95% CI 0.97, 1.13). CONCLUSION: SLE women had significantly shorter TL than controls. SLE women trended towards shorter TL at a younger age. When carotid plaque was identified, the younger SLE women had shorter TL. Only older age but not shorter TL was independently associated with carotid plaque. Additional studies are needed to confirm if TL is a novel biomarker for cardiovascular disease in SLE.


Asunto(s)
Estenosis Carotídea/complicaciones , Lupus Eritematoso Sistémico/complicaciones , Placa Aterosclerótica/complicaciones , Telómero , Adulto , Factores de Edad , Anciano , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/genética , Femenino , Humanos , Lupus Eritematoso Sistémico/diagnóstico por imagen , Lupus Eritematoso Sistémico/genética , Masculino , Persona de Mediana Edad , Proyectos Piloto , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/genética , Factores de Riesgo , Índice de Severidad de la Enfermedad , Ultrasonografía
6.
Arch Biochem Biophys ; 530(1): 1-6, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23257071

RESUMEN

The 96-kDa glycoprotein (gp96) is an endoplasmic reticulum (ER) resident molecular chaperone. Under physiologic conditions, gp96 facilitates the transport of toll-like receptors (TLRs) to cell or endosomal membranes. Under pathologic circumstances such as rheumatoid arthritis, gp96 translocates to the cell surface and extracellular space, serving as an endogenous danger signal promoting TLR signaling. Macrophages play a central role in regulating innate and adaptive immunity, and are the major source of proinflammatory cytokines and chemokines in rheumatoid arthritis (RA). Macrophage numbers in the sublining of RA synovial tissue correlate with clinical response. This review focuses on the recent findings that implicate gp96 induced macrophage activation mediated through TLR signaling in the pathogenesis of RA and provides insights concerning the targeting gp96 and the TLR signaling pathway as therapeutic approaches for patients with RA and possibly other chronic inflammatory conditions.


Asunto(s)
Artritis Reumatoide/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Proteínas de Choque Térmico/metabolismo , Humanos , Terapia Molecular Dirigida , Transducción de Señal , Receptores Toll-Like/metabolismo
7.
Arthritis Rheum ; 64(11): 3638-48, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22777994

RESUMEN

OBJECTIVE: The mechanisms that contribute to the persistent activation of macrophages in rheumatoid arthritis (RA) are incompletely understood. The aim of this study was to determine the contribution of endogenous gp96 in Toll-like receptor (TLR)-mediated macrophage activation in RA. METHODS: RA synovial fluid was used to activate macrophages and HEK-TLR-2 and HEK-TLR-4 cells. Neutralizing antibodies to TLR-2, TLR-4, and gp96 were used to inhibit activation. RA synovial fluid macrophages were isolated by CD14 negative selection. Cell activation was measured by the expression of tumor necrosis factor α (TNFα) or interleukin-8 messenger RNA. Arthritis was induced in mice by K/BxN serum transfer. The expression of gp96 was determined by immunoblot analysis, enzyme-linked immunosorbent assay, and immunohistochemistry. Arthritis was treated with neutralizing anti-gp96 antiserum or control serum. RESULTS: RA synovial fluid induced the activation of macrophages and HEK-TLR-2 and HEK-TLR-4 cells. RA synovial fluid-induced macrophage and HEK-TLR-2 activation was suppressed by neutralizing anti-gp96 antibodies only in the presence of high (>800 ng/ml) rather than low (<400 ng/ml) concentrations of gp96. Neutralization of RA synovial fluid macrophage cell surface gp96 inhibited the constitutive expression of TNFα. Supporting the role of gp96 in RA, joint tissue gp96 expression was induced in mice with the K/BxN serum-induced arthritis, and neutralizing antibodies to gp96 ameliorated joint inflammation, as determined by clinical and histologic examination. CONCLUSION: These observations support the notion that gp96 plays a role as an endogenous TLR-2 ligand in RA and identify the TLR-2 pathway as a therapeutic target.


Asunto(s)
Artritis Reumatoide/inmunología , Glicoproteínas de Membrana/inmunología , Transducción de Señal/inmunología , Membrana Sinovial/inmunología , Receptor Toll-Like 2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Neutralizantes/inmunología , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos , Persona de Mediana Edad , Membrana Sinovial/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
8.
iScience ; 26(5): 106734, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216119

RESUMEN

T regulatory cells (Tregs) are a potential therapeutic target in many autoimmune diseases including rheumatoid arthritis (RA). The mechanisms responsible for the maintenance of Tregs in chronic inflammatory conditions such as RA are poorly understood. We employed our mouse model of RA in which, the following deletion of Flice-like inhibitory protein in CD11c+ cells, CD11c-FLIP-KO (HUPO) mice develop spontaneous, progressive, erosive arthritis, with reduced Tregs, and the adoptive transfer of Tregs ameliorates the arthritis. HUPO thymic Treg development was normal, but peripheral of Treg Foxp3 was diminished mediated by reduction of dendritic cells and interleukin-2 (IL-2). During chronic inflammatory arthritis Tregs fail to maintain Foxp3, leading to non-apoptotic cell death and conversion to CD4+CD25+Foxp3- cells. Treatment with IL-2 increased Tregs and ameliorated the arthritis. In summary, reduced dendritic cells and IL-2 in the milieu of chronic inflammation, contribute to Treg instability, promoting HUPO arthritis progression, and suggesting a therapeutic approach in RA.

9.
Ann Rheum Dis ; 71(8): 1411-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22523426

RESUMEN

OBJECTIVE: The mechanisms contributing to the persistent activation of macrophages in rheumatoid arthritis (RA) are not fully understood. Some studies suggest that endogenous toll-like receptor (TLR) ligands promote the chronic inflammation observed in RA. The objective of this study was to identify endogenous TLR ligands expressed in RA synovial tissue (ST) based on their ability to bind the extracellular domains of TLR2 or TLR4. METHODS: A yeast two-hybrid cDNA library was constructed from ST obtained by arthroscopy from patients with RA and screened using the extracellular domains of TLR2 and TLR4 as the bait. Interactions between TLRs and Snapin were demonstrated by reciprocal co-immunoprecipitation. ST was examined by histology, and single- and two-colour immunohistochemistry and quantitative reverse transcriptase PCR. Snapin (SNAP - associated protein) expression in macrophages was examined by Western Blot analysis and confocal microscopy. The ability of Snapin to activate through TLR2 was examined. RESULTS: Employing a yeast two-hybrid system, Snapin was the most frequently identified molecule that interacted with TLR2. These results were confirmed by pull-down of in vitro-expressed Snapin together with TLR2. By immunohistochemistry and quantitative reverse transcriptase PCR, Snapin was highly expressed in RA ST, and it was readily detected in macrophages, where it co-localised in the late endosomes. ST Snapin expression correlated with inflammation and was not disease specific. Finally, Snapin was capable of activating through TLR2. CONCLUSION: These observations identify Snapin as a novel endogenous TLR2 ligand in RA, and thus support a role for persistent TLR2 signalling in the pathogenesis of RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/cirugía , Western Blotting , Endosomas/metabolismo , Endosomas/patología , Expresión Génica , Biblioteca de Genes , Humanos , Ligandos , Activación de Macrófagos , Macrófagos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/fisiología , Membrana Sinovial/patología , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética
10.
Blood ; 116(23): 4968-77, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-20724542

RESUMEN

FLIP is a well-established suppressor of death receptor-mediated apoptosis. To define its essential in vivo role in myeloid cells, we generated and characterized mice with Flip conditionally deleted in the myeloid lineage. Myeloid specific Flip-deficient mice exhibited growth retardation, premature death, and splenomegaly with altered architecture and extramedullary hematopoiesis. They also displayed a dramatic increase of circulating neutrophils and multiorgan neutrophil infiltration. In contrast, although circulating inflammatory monocytes were also significantly increased, macrophages in the spleen, lymph nodes, and the peritoneal cavity were reduced. In ex vivo cultures, bone marrow progenitor cells failed to differentiate into macrophages when Flip was deleted. Mixed bone marrow chimera experiments using cells from Flip-deficient and wild-type mice did not demonstrate an inflammatory phenotype. These observations demonstrate that FLIP is necessary for macrophage differentiation and the homeostatic regulation of granulopoiesis.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Diferenciación Celular/genética , Granulocitos/citología , Homeostasis/genética , Macrófagos/citología , Mielopoyesis/genética , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Granulocitos/metabolismo , Inmunohistoquímica , Inmunofenotipificación , Ganglios Linfáticos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/citología
11.
J Immunol ; 184(8): 4479-87, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20228199

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease that is mediated, in part, by proinflammatory factors produced by RA synovial tissue (ST) fibroblasts and macrophages, resulting in monocyte migration from the blood to the ST. To characterize the potential role of IL-17 in monocyte migration, RA synovial fibroblasts and macrophages were activated with IL-17 and examined for the expression of monocyte chemokines. The two potentially important monocyte chemoattractants identified were CCL20/MIP-3alpha and CCL2/MCP-1, which were significantly induced in RA synovial fibroblasts and macrophages. However, in vivo, only CCL2/MCP-1 was detectable following adenovirus IL-17 injection. We found that IL-17 induction of CCL2/MCP-1 was mediated by the PI3K, ERK, and JNK pathways in RA ST fibroblasts and by the PI3K and ERK pathways in macrophages. Further, we show that neutralization of CCL2/MCP-1 significantly reduced IL-17-mediated monocyte recruitment into the peritoneal cavity. We demonstrate that local expression of IL-17 in ankle joints was associated with significantly increased monocyte migration and CCL2/MCP-1 levels. Interestingly, we show that RA synovial fluids immunoneutralized for IL-17 and CCL2/MCP-1 have similar monocyte chemotaxis activity as those immunoneutralized for each factor alone. In short, CCL2/MCP-1 produced from cell types present in the RA joint, as well as in experimental arthritis, may be responsible, in part, for IL-17-induced monocyte migration; hence, these results suggest that CCL2/MCP-1 is a downstream target of IL-17 that may be important in RA.


Asunto(s)
Movimiento Celular/inmunología , Quimiocina CCL2/biosíntesis , Interleucina-17/fisiología , Monocitos/inmunología , Monocitos/metabolismo , Animales , Articulación del Tobillo , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Quimiocina CCL2/fisiología , Enfermedad Crónica , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Interleucina-17/biosíntesis , Interleucina-17/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Membrana Sinovial/inmunología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
12.
Front Immunol ; 13: 912069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225929

RESUMEN

Canonical inflammasomes are innate immune protein scaffolds that enable the activation of inflammatory caspase-1, and subsequently the processing and release of interleukin (IL)-1ß, IL-18, and danger signals, as well as the induction of pyroptotic cell death. Inflammasome assembly and activation occurs in response to sensing of infectious, sterile and self-derived molecular patterns by cytosolic pattern recognition receptors, including the Nod-like receptor NLRP3. While these responses are essential for host defense, excessive and uncontrolled NLRP3 inflammasome responses cause and contribute to a wide spectrum of inflammatory diseases, including gout. A key step in NLRP3 inflammasome assembly is the sequentially nucleated polymerization of Pyrin domain (PYD)- and caspase recruitment domain (CARD)-containing inflammasome components. NLRP3 triggers polymerization of the adaptor protein ASC through PYD-PYD interactions, but ASC polymerization then proceeds in a self-perpetuating manner and represents a point of no return, which culminates in the activation of caspase-1 by induced proximity. In humans, small PYD-only proteins (POPs) lacking an effector domain regulate this key process through competitive binding, but limited information exists on their physiological role during health and disease. Here we demonstrate that POP1 expression in macrophages is sufficient to dampen MSU crystal-mediated inflammatory responses in animal models of gout. Whether MSU crystals are administered into a subcutaneous airpouch or into the ankle joint, the presence of POP1 significantly reduces neutrophil infiltration. Also, airpouch exudates have much reduced IL-1ß and ASC, which are typical pro-inflammatory indicators that can also be detected in synovial fluids of gout patients. Exogenous expression of POP1 in mouse and human macrophages also blocks MSU crystal-induced NLRP3 inflammasome assembly, resulting in reduced IL-1ß and IL-18 secretion. Conversely, reduced POP1 expression in human macrophages enhances IL-1ß secretion. We further determined that the mechanism for the POP1-mediated inhibition of NLRP3 inflammasome activation is through its interference with the crucial NLRP3 and ASC interaction within the inflammasome complex. Strikingly, administration of an engineered cell permeable version of POP1 was able to ameliorate MSU crystal-mediated inflammation in vivo, as measured by neutrophil infiltration. Overall, we demonstrate that POP1 may play a crucial role in regulating inflammatory responses in gout.


Asunto(s)
Gota , Inflamasomas , Ribonucleoproteínas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 1/metabolismo , Gota/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
13.
Physiol Genomics ; 43(13): 836-43, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21521779

RESUMEN

Coronary artery calcium (CAC) is a strong indicator of total atherosclerosis burden. Epidemiological data have shown substantial differences in CAC prevalence and severity between African Americans and whites. However, little is known about the molecular mechanisms underlying initiation and progression of CAC. Microarray gene expression profiling of peripheral blood leucocytes was performed from 119 healthy women aged 50 yr or above in the Multi-Ethnic Study of Atherosclerosis cohort; 48 women had CAC score >100 and carotid intima-media thickness (IMT) >1 mm, while 71 had CAC <10 and IMT <0.65 mm. When 17 African Americans were compared with 41 whites in the low-CAC group, 409 differentially expressed genes (false discovery rate <5%) were identified. In addition, 316 differentially expressed genes were identified between the high- and low-CAC groups. A substantial overlap between these two gene lists was observed (148 genes, P < 10(-6)). Furthermore, genes expressed lower in African Americans also tend to express lower in individuals with low CAC (correlation 0.69, P = 0.002). Ontology analysis of the 409 race-associated genes revealed significant enrichment in mobilization of calcium and immune/inflammatory response (P < 10(-9)). Of note, 25 of 30 calcium mobilization genes were involved in immune/inflammatory response (P < 10(-10)). Our data suggest a connection between immune response and vascular calcification and the result provides a potential mechanistic explanation for the lower prevalence and severity of CAC in African Americans compared with whites.


Asunto(s)
Aterosclerosis/etnología , Aterosclerosis/genética , Negro o Afroamericano/genética , Calcinosis/genética , Vasos Coronarios/patología , Regulación de la Expresión Génica , Población Blanca/genética , Anciano , Anciano de 80 o más Años , Calcinosis/complicaciones , Calcinosis/etnología , Cardiomiopatías/complicaciones , Cardiomiopatías/etnología , Cardiomiopatías/genética , Diabetes Mellitus/etnología , Diabetes Mellitus/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Immunol ; 182(8): 4965-73, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19342676

RESUMEN

Macrophages are important mediators of chronic inflammation and are prominent in the synovial lining and sublining of patients with rheumatoid arthritis (RA). Recently, we demonstrated increased TLR2 and TLR4 expression and increased response to microbial TLR2 and TLR4 ligands in macrophages from the joints of RA. The current study characterized the expression of the 96-kDa heat shock glycoprotein (gp96) in the joints of RA and its role as an endogenous TLR ligand to promote innate immunity in RA. gp96 was increased in RA compared with osteoarthritis and arthritis-free control synovial tissues. The expression of gp96 strongly correlated with inflammation and synovial lining thickness. gp96 was increased in synovial fluid from the joints of RA compared with disease controls. Recombinant gp96 was a potent activator of macrophages and the activation was mediated primarily through TLR2 signaling. The cellular response to gp96 was significantly stronger with RA synovial macrophages compared with peripheral blood monocytes from RA or healthy controls. The transcription of TLR2, TNF-alpha, and IL-8, but not TLR4, was significantly induced by gp96, and the induction was significantly greater in purified RA synovial macrophages. The expression of TLR2, but not TLR4, on synovial fluid macrophages strongly correlated with the level of gp96 in the synovial fluid. The present study documents the potential role of gp96 as an endogenous TLR2 ligand in RA and provides insight into the mechanism by which gp96 promotes the chronic inflammation of RA, identifying gp96 as a potential new therapeutic target.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Artritis Reumatoide/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Animales , Antígenos de Neoplasias/genética , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Línea Celular , Sistema Libre de Células , Perros , Regulación de la Expresión Génica , Humanos , Macrófagos/metabolismo , Membrana Sinovial/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/metabolismo
15.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523968

RESUMEN

Little is known about the mechanisms regulating the transition of circulating monocytes into pro- or anti-inflammatory macrophages in chronic inflammation. Here, we took advantage of our novel mouse model of rheumatoid arthritis, in which Flip is deleted under the control of a CD11c promoter (HUPO mice). During synovial tissue homeostasis, both monocyte-derived F4/80int and self-renewing F4/80hi tissue-resident, macrophage populations were identified. However, in HUPO mice, decreased synovial tissue-resident macrophages preceded chronic arthritis, opened a niche permitting the influx of activated monocytes, with impaired ability to differentiate into F4/80hi tissue-resident macrophages. In contrast, Flip-replete monocytes entered the vacated niche and differentiated into tissue-resident macrophages, which suppressed arthritis. Genes important in macrophage tissue residency were reduced in HUPO F4/80hi macrophages and in leukocyte-rich rheumatoid arthritis synovial tissue monocytes. Our observations demonstrate that the macrophage tissue-resident niche is necessary for suppression of chronic inflammation and may contribute to the pathogenesis of rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Membrana Sinovial , Animales , Artritis Reumatoide/etiología , Artritis Reumatoide/patología , Homeostasis , Inflamación/patología , Macrófagos/patología , Ratones , Membrana Sinovial/patología
16.
Mol Cell Biol ; 26(6): 2215-25, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16507998

RESUMEN

Receptor-interacting protein (RIP) has been implicated in the induction of death receptor-mediated, nonapoptotic cell death. However, the mechanisms remain to be elucidated. Here we show that tumor necrosis factor alpha induced RIP-dependent inhibition of adenine nucleotide translocase (ANT)-conducted transport of ADP into mitochondria, which resulted in reduced ATP and necrotic cell death. The inhibition of ADP/ATP exchange coincided with the loss of interaction between ANT and cyclophilin D and the inability of ANT to adopt the cytosolic conformational state, which prevented cytochrome c release. Neither overexpression of Bcl-xL nor inhibition of reactive oxygen species prevented necrosis. In contrast, the ectopic expression of ANT or cyclophilin D was effective at preventing cell death. These observations demonstrate a novel mechanism initiated through death receptor ligation and mediated by RIP that results in the suppression of ANT activity and necrosis.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Necrosis , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Clorometilcetonas de Aminoácidos/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Transporte Biológico/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/farmacología , Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Humanos , Membranas Intracelulares , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/genética , Translocasas Mitocondriales de ADP y ATP/metabolismo , Permeabilidad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/farmacología , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
17.
Curr Rheumatol Rep ; 11(5): 357-64, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19772831

RESUMEN

An increasing body of data supports the role of the innate immune system in the pathogenesis of rheumatoid arthritis (RA). Toll-like receptors (TLRs) are expressed by cells within the RA joint and various endogenous TLR ligands are present within the inflamed joints of patients with RA. Further, various animal models suggest that TLR signaling is important in the pathogenesis of disease. Overall, the data suggest that activation by endogenous TLR ligands may contribute to the persistent expression of proinflammatory cytokines by macrophages and the joint damage to cartilage and bone that occurs in RA. The data support a potential role for suppression of TLR signaling as a novel therapeutic approach in patients with RA.


Asunto(s)
Artritis Reumatoide/inmunología , Receptores Toll-Like/fisiología , Animales , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Diseño de Fármacos , Humanos , Articulaciones/metabolismo , Ligandos , Transducción de Señal/efectos de los fármacos
18.
Autophagy ; 13(2): 285-301, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27929705

RESUMEN

We previously observed that SNAPIN, which is an adaptor protein in the SNARE core complex, was highly expressed in rheumatoid arthritis synovial tissue macrophages, but its role in macrophages and autoimmunity is unknown. To identify SNAPIN's role in these cells, we employed siRNA to silence the expression of SNAPIN in primary human macrophages. Silencing SNAPIN resulted in swollen lysosomes with impaired CTSD (cathepsin D) activation, although total CTSD was not reduced. Neither endosome cargo delivery nor lysosomal fusion with endosomes or autophagosomes was inhibited following the forced silencing of SNAPIN. The acidification of lysosomes and accumulation of autolysosomes in SNAPIN-silenced cells was inhibited, resulting in incomplete lysosomal hydrolysis and impaired macroautophagy/autophagy flux. Mechanistic studies employing ratiometric color fluorescence on living cells demonstrated that the reduction of SNAPIN resulted in a modest reduction of H+ pump activity; however, the more critical mechanism was a lysosomal proton leak. Overall, our results demonstrate that SNAPIN is critical in the maintenance of healthy lysosomes and autophagy through its role in lysosome acidification and autophagosome maturation in macrophages largely through preventing proton leak. These observations suggest an important role for SNAPIN and autophagy in the homeostasis of macrophages, particularly long-lived tissue resident macrophages.


Asunto(s)
Ácidos/metabolismo , Autofagosomas/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagosomas/ultraestructura , Autofagia , Catepsina D/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Activación Enzimática , Silenciador del Gen , Células HEK293 , Humanos , Lisosomas/ultraestructura , Macrófagos/ultraestructura , Fusión de Membrana , Protones , ARN Interferente Pequeño/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura
19.
Arthritis Rheumatol ; 69(9): 1762-1771, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28511285

RESUMEN

OBJECTIVE: Macrophages are critical in the pathogenesis of rheumatoid arthritis (RA). We recently demonstrated that FLIP is necessary for the differentiation and/or survival of macrophages. We also showed that FLIP is highly expressed in RA synovial macrophages. This study was undertaken to determine if a reduction in FLIP in mouse macrophages reduces synovial tissue macrophages and ameliorates serum-transfer arthritis. METHODS: Mice with Flip deleted in myeloid cells (Flipf/f LysMc/+ mice) and littermate controls were used. Arthritis was induced by intraperitoneal injection of K/BxN serum. Disease severity was evaluated by clinical score and change in ankle thickness, and joints were examined by histology and immunohistochemistry. Cells were isolated from the ankles and bone marrow of the mice and examined by flow cytometry, real-time quantitative reverse transcriptase-polymerase chain reaction, or Western blotting. RESULTS: In contrast to expectations, Flipf/f LysMc/+ mice developed more severe arthritis early in the clinical course, but peak arthritis was attenuated and the resolution phase more complete than in control mice. Prior to the induction of serum-transfer arthritis, the number of tissue-resident macrophages was reduced. On day 9 after arthritis induction, the number of F4/80high macrophages in the joints of the Flipf/f LysMc/+ mice was not decreased, but increased. FLIP was reduced in the F4/80high macrophages in the ankles of the Flipf/f LysMc/+ mice, while F4/80high macrophages expressed an antiinflammatory phenotype in both the Flipf/f LysMc/+ and control mice. CONCLUSION: Our observations suggest that reducing FLIP in macrophages by increasing the number of antiinflammatory macrophages may be an effective therapeutic approach to suppress inflammation, depending on the disease stage.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo , Animales , Tobillo/patología , Artritis Experimental/patología , Artritis Reumatoide/patología , Articulaciones/patología , Ratones , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad , Membrana Sinovial/citología
20.
PLoS One ; 10(6): e0128385, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26046660

RESUMEN

Calponins form an evolutionary highly conserved family of actin filament-associated proteins expressed in both smooth muscle and non-muscle cells. Whereas calponin-1 and calponin-2 have already been studied to some extent, little is known about the role of calponin-3 under physiological conditions due to the lack of an appropriate animal model. Here, we have used an unbiased screen to identify novel proteins implicated in signal transduction downstream of the precursor B cell receptor (pre-BCR) in B cells. We find that calponin-3 is expressed throughout early B cell development, localizes to the plasma membrane and is phosphorylated in a Syk-dependent manner, suggesting a putative role in pre-BCR signaling. To investigate this in vivo, we generated a floxed calponin-3-GFP knock-in mouse model that enables tracking of cells expressing calponin-3 from its endogenous promoter and allows its tissue-specific deletion. Using the knock-in allele as a reporter, we show that calponin-3 expression is initiated in early B cells and increases with their maturation, peaking in the periphery. Surprisingly, conditional deletion of the Cnn3 revealed no gross defects in B cell development despite this regulated expression pattern and the in vitro evidence, raising the question whether other components may compensate for its loss in lymphocytes. Together, our work identifies calponin-3 as a putative novel mediator downstream of the pre-BCR. Beyond B cells, the mouse model we generated will help to increase our understanding of calponin-3 in muscle and non-muscle cells under physiological conditions.


Asunto(s)
Linfocitos B/citología , Proteínas de Unión al Calcio/genética , Proteínas de Microfilamentos/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Técnicas de Sustitución del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Quinasa Syk , Linfocitos T/inmunología , Linfocitos T/metabolismo , Calponinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA