Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Cell Mol Med ; 26(20): 5135-5149, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36117396

RESUMEN

The regulation of fibrotic activities is key to improving pathological remodelling post-myocardial infarction (MI). Currently, in the clinic, safe and curative therapies for cardiac fibrosis and improvement of the pathological fibrotic environment, scar formation and pathological remodelling post-MI are lacking. Previous studies have shown that miR-486 is involved in the regulation of fibrosis. However, it is still unclear how miR-486 functions in post-MI regeneration. Here, we first demonstrated that miR-486 targeting SRSF3/p21 mediates the senescence of cardiac myofibroblasts to improve their fibrotic activity, which benefits the regeneration of MI by limiting scar size and post-MI remodelling. miR-486-targeted silencing has high potential as a novel target to improve fibrotic activity, cardiac fibrosis and pathological remodelling.


Asunto(s)
MicroARNs , Infarto del Miocardio , Cicatriz/patología , Fibrosis , Humanos , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/patología , Miofibroblastos/patología , Factores de Empalme Serina-Arginina/genética
2.
J Cell Mol Med ; 24(4): 2531-2541, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930692

RESUMEN

Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar-free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three-dimensional network. CTs might play a role in the regeneration of injured myocardium.


Asunto(s)
Cardiopatías/patología , Corazón/fisiología , Telocitos/patología , Xenopus/fisiología , Animales , Miocitos Cardíacos/patología , Regeneración/fisiología , Telopodos/patología
3.
Exp Brain Res ; 238(1): 111-119, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31802149

RESUMEN

After exiting the hindbrain, branchial motor axons reach their targets in association with sensory ganglia. The trigeminal ganglion has been shown to promote motor axon growth from rhombomeres 2/3 and 4/5, but it is unknown whether this effect is ganglion specific and through which signals it is mediated. Here, we addressed these questions by co-cultures of ventral rhombomere 8 explants with cranial and spinal sensory ganglia in a collagen gel matrix. Our results show that all cranial sensory ganglia and even a trunk dorsal root ganglion can promote motor axon growth and that ganglia isolated from older embryos had a stronger effect on the axonal growth than younger ones. We found that brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are necessary and sufficient for this effect. Altogether, our results demonstrate that the promoting effect of sensory ganglia on cranial motor axon growth is stage dependent, but not ganglion specific and is mediated by BDNF and NGF signals.


Asunto(s)
Axones/fisiología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Nervios Craneales/crecimiento & desarrollo , Ganglios Sensoriales/crecimiento & desarrollo , Neuronas Motoras/fisiología , Factor de Crecimiento Nervioso/fisiología , Animales , Embrión de Pollo , Ganglios Espinales/crecimiento & desarrollo
4.
J Cell Mol Med ; 23(12): 8328-8342, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31612566

RESUMEN

Thus far, the cellular and molecular mechanisms related to early (especially within 24 hours after acute myocardial infarct (MI)) exercise-mediated beneficial effects on MI have not yet been thoroughly established. In the present study, we demonstrated that acute MI rats that underwent early moderate exercise training beginning one day after MI showed no increase in mortality and displayed significant improvements in MI healing and ventricular remodelling, including an improvement in cardiac function, a decrease in infarct size, cardiomyocyte apoptosis, cardiac fibrosis and cardiomyocyte hypertrophy, and an increase in myocardial angiogenesis, left ventricular wall thickness and the number of cardiac telocytes in the border zone. Integrated miRNA-mRNA profiling analysis performed by the ingenuity pathway analysis system revealed that the inhibition of the TGFB1 regulatory network, activation of leucocytes and migration of leucocytes into the infarct zone comprise the molecular mechanism underlying early moderate exercise-mediated improvements in cardiac fibrosis and the pathological inflammatory response. The findings of the present study demonstrate that early moderate exercise training beginning one day after MI is safe and leads to significantly enhanced MI healing and ventricular remodelling. Understanding the mechanism behind the positive effects of this early training protocol will help us to further tailor suitable cardiac rehabilitation programmes for humans.


Asunto(s)
Inflamación/fisiopatología , Infarto del Miocardio/fisiopatología , Condicionamiento Físico Animal/fisiología , Remodelación Ventricular/fisiología , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Corazón/fisiopatología , Humanos , Inflamación/genética , Inflamación/patología , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Mensajero/genética , Ratas Sprague-Dawley , Remodelación Ventricular/genética
5.
Dev Dyn ; 245(3): 342-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26676088

RESUMEN

The muscles of the shoulder region are important for movements of the upper limbs and for stabilizing the girdle elements by connecting them to the trunk. They have a triple embryonic origin. First, the branchiomeric shoulder girdle muscles (sternocleidomastoideus and trapezius muscles) develop from the occipital lateral plate mesoderm using Tbx1 over the course of this development. The second population of cells constitutes the superficial shoulder girdle muscles (pectoral and latissimus dorsi muscles), which are derived from the wing premuscle mass. This muscle group undergoes a two-step development, referred to as the "in-out" mechanism. Myogenic precursor cells first migrate anterogradely into the wing bud. Subsequently, they migrate in a retrograde manner from the wing premuscle mass to the trunk. SDF-1/CXCR4 signaling is involved in this outward migration. A third group of shoulder muscles are the rhomboidei and serratus anterior muscles, which are referred to as deep shoulder girdle muscles; they are thought to be derived from the myotomes. It is, however, not clear how myotome cells make contact to the scapula to form these two muscles. In this review, we discuss the development of the shoulder girdle muscle in relation to the different muscle groups.


Asunto(s)
Esbozos de los Miembros/embriología , Mesodermo/embriología , Músculo Esquelético/embriología , Mioblastos Esqueléticos/metabolismo , Hombro/embriología , Transducción de Señal/fisiología , Alas de Animales/embriología , Animales , Proteínas Aviares/metabolismo , Embrión de Pollo , Humanos , Esbozos de los Miembros/citología , Mesodermo/citología , Músculo Esquelético/citología , Mioblastos Esqueléticos/citología , Alas de Animales/citología
6.
BMC Dev Biol ; 13: 37, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24138189

RESUMEN

BACKGROUND: The myotome is the primitive skeletal muscle that forms within the embryonic metameric body wall. It can be subdivided into an epaxial and hypaxial domain. It has been shown that the formation of the epaxial myotome requires the dorsomedial lip of the dermomyotome (DML). Although the ventrolateral lip (VLL) of the dermomyotome is believed to be required for the formation of the hypaxial myotome, experimentally evidence for this statement still needs to be provided. Provision of such data would enable the resolution of a debate regarding the formation of the hypaxial dermomyotome. Two mechanisms have been proposed for this tissue. The first proposes that the intermediate dermomyotome undergoes cellular expansion thereby pushing the ventral lateral lip in a lateral direction (translocation). In contrast, the alternative view holds that the ventral lateral lip grows laterally. RESULTS: Using time lapse confocal microscopy, we observed that the GFP-labelled ventrolateral lip (VLL) of the dermomyotome grows rather than translocates in a lateral direction. The necessity of the VLL for lateral extension of the myotome was addressed by ablation studies. We found that the hypaxial myotome did not form after VLL ablation. In contrast, the removal of an intermediate portion of the dermomyotome had very little effect of the hypaxial myotome. These results demonstrate that the VLL is required for the formation of the hypaxial myotome. CONCLUSION: Our study demonstrates that the dermomyotome ventrolateral lip is essential for the hypaxial myotome formation and supports the lip extension model. Therefore, despite being under independent signalling controls, both the dorsomedial and ventrolateral lip fulfil the same function, i.e. they extend into adjacent regions permitting the growth of the myotome.


Asunto(s)
Músculo Esquelético/embriología , Somitos/embriología , Animales , Embrión de Pollo , Desarrollo Embrionario , Epitelio/embriología , Microscopía Confocal
7.
Development ; 137(17): 2961-71, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699298

RESUMEN

In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.


Asunto(s)
Mesodermo/embriología , Desarrollo de Músculos , Músculos del Cuello/embriología , Animales , Animales Modificados Genéticamente , Proteínas Aviares/genética , Evolución Biológica , Embrión de Pollo , Coturnix , Regulación del Desarrollo de la Expresión Génica , Ratones , Desarrollo de Músculos/genética , Mutación , Cresta Neural/embriología , Factores de Transcripción Paired Box/genética , Somitos/embriología , Quimera por Trasplante/embriología , Quimera por Trasplante/genética
8.
Cell Biosci ; 13(1): 29, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782288

RESUMEN

BACKGROUND: Recently, it was reported that the adult X. tropicalis heart can regenerate in a nearly scar-free manner after injury via apical resection. Thus, a cardiac regeneration model in adult X. tropicalis provides a powerful tool for recapitulating a perfect regeneration phenomenon, elucidating the underlying molecular mechanisms of cardiac regeneration in an adult heart, and developing an interventional strategy for the improvement in the regeneration of an adult heart, which may be more applicable in mammals than in species with a lower degree of evolution. However, a noninvasive and rapid real-time method that can observe and measure the long-term dynamic change in the regenerated heart in living organisms to monitor and assess the regeneration and repair status in this model has not yet been established. RESULTS: In the present study, the methodology of echocardiographic assessment to characterize the morphology, anatomic structure and cardiac function of injured X. tropicalis hearts established by apex resection was established. The findings of this study demonstrated for the first time that small animal echocardiographic analysis can be used to assess the regeneration of X. tropicalis damaged heart in a scar-free perfect regeneration or nonperfect regeneration with adhesion manner via recovery of morphology and cardiac function. CONCLUSIONS: Small animal echocardiography is a reliable, noninvasive and rapid real-time method for observing and assessing the long-term dynamic changes in the regeneration of injured X. tropicalis hearts.

9.
Dev Biol ; 357(1): 108-16, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21741963

RESUMEN

The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the "In-Out" mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.


Asunto(s)
Tipificación del Cuerpo , Miembro Anterior/embriología , Músculo Esquelético/embriología , Animales , Embrión de Pollo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Miembro Anterior/citología , Ratones , Músculo Esquelético/anatomía & histología , Músculo Esquelético/citología , Somitos/citología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
10.
Dev Biol ; 359(2): 303-20, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21884692

RESUMEN

Adult skeletal muscles in vertebrates are composed of different types of myofibers endowed with distinct metabolic and contraction speed properties. Genesis of this fiber-type heterogeneity during development remains poorly known, at least in mammals. Six1 and Six4 homeoproteins of the Six/sine oculis family are expressed throughout muscle development in mice, and Six1 protein is enriched in the nuclei of adult fast-twitch myofibers. Furthermore, Six1/Six4 proteins are known to control the early activation of fast-type muscle genes in myocytes present in the mouse somitic myotome. Using double Six1:Six4 mutants (SixdKO) to dissect in vivo the genesis of muscle fiber-type heterogeneity, we analyzed here the phenotype of the dorsal/epaxial muscles remaining in SixdKO. We show by electron microscopy analysis that the absence of these homeoproteins precludes normal sarcomeric organization of the myofiber leading to a dystrophic aspect, and by immunohistochemistry experiments a deficiency in synaptogenesis. Affymetrix transcriptome analysis of the muscles remaining in E18.5 SixdKO identifies a major role for these homeoproteins in the control of genes that are specifically activated in the adult fast/glycolytic myofibers, particularly those controlling Ca(2+) homeostasis. Absence of Six1 and Six4 leads to the development of dorsal myofibers lacking expression of fast-type muscle genes, and mainly expressing a slow-type muscle program. The absence of restriction of the slow-type program during the fetal period in SixdKO back muscles is associated with a decreased HDAC4 protein level, and subcellular relocalization of the transcription repressor Sox6. Six genes thus behave as essential global regulators of muscle gene expression, as well as a central switch to drive the skeletal muscle fast phenotype during fetal development.


Asunto(s)
Proteínas de Drosophila/genética , Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Northern Blotting , Células Cultivadas , Proteínas de Drosophila/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/ultraestructura , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Desarrollo de Músculos/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/ultraestructura , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/ultraestructura , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma
11.
J Anat ; 221(2): 115-20, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22606994

RESUMEN

Somites compartmentalize into a dorsal epithelial dermomyotome and a ventral mesenchymal sclerotome. While sclerotomes give rise to vertebrae and intervertebral discs, dermomyotomes contribute to skeletal muscle and epaxial dermis. Bone morphogenetic protein (BMP)-signals from the lateral mesoderm induce the lateral portion of the dermomyotome to form chondrogenic precursor cells, forming the cartilage of the scapula blade. The fact that BMPs are expressed in the roof plate of the neural tube where they induce cartilage formation led to the question why cells migrating from the medial part of the dermomyotome do not undergo chondrogenic differentiation and do not contribute to the dorsal part of the vertebrae. In the present study, we traced dermomyotomal derivatives by using the quail-chick marker technique. Our study reveals a temporal sequence in the formation of the vertebral cartilage and the midline dermis. The dorsal mesenchyme overlying the roof plate of the neural tube is formed prior to the de-epithelialization of the dermomyotome. Dermomyotomal cells start to migrate medially into the sub-ectodermal space to form the midline dermis after chondrogenesis of the dorsal mesenchyme has occurred. This time delay between chondrogenesis of the dorsal vertebra and dermal formation allows an undisturbed development of these two tissue components within a narrow region of the embryo.


Asunto(s)
Embrión de Pollo/crecimiento & desarrollo , Dermis/embriología , Columna Vertebral/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/embriología , Codorniz/embriología , Factores de Tiempo
12.
Front Cardiovasc Med ; 9: 967463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061561

RESUMEN

Objective: Brain-derived neurotrophic factor (BDNF) and its receptor TrkB-T1 were recently found to be expressed in cardiomyocytes. However, the functional role of cardiomyocyte-derived BDNF in heart pathophysiology is not yet fully known. Recent studies revealed that BDNF-TrkB pathway plays a critical role to maintain integrity of cardiac structure and function, cardiac pathology and regeneration of myocardial infarction (MI). Therefore, the BDNF-TrkB pathway may be a novel target for myocardial pathophysiology in the adult heart. Approach and results: In the present study, we established a cardiomyocyte-derived BDNF conditional knockout mouse in which BDNF expression in developing cardiomyocytes is ablated under the control of the Myosin heavy chain 6 (MYH6) promoter. The results of the present study show that ablation of cardiomyocyte-derived BDNF during development does not impair survival, growth or reproduction; however, in the young adult heart, it causes cardiomyocyte death, degeneration of the myocardium, cardiomyocyte hypertrophy, left atrial appendage thrombosis, decreased cardiac function, increased cardiac inflammation and ROS activity, and metabolic disorders, leading to heart failure (HF) in the adult heart and eventually resulting in a decrease in the one-year survival rate. In addition, ablation of cardiomyocyte-derived BDNF during the developmental stage leads to exacerbation of cardiac dysfunction and poor regeneration after MI in adult hearts. Conclusion: Cardiomyocyte-derived BDNF is irreplaceable for maintaining the integrity of cardiac structure and function in the adult heart and regeneration after MI. Therefore, the BDNF-TrkB pathway will be a novel target for myocardial pathophysiology in the adult heart.

13.
Elife ; 112022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36399125

RESUMEN

Cardiovascular disease is the leading cause of death worldwide due to the inability of adult heart to regenerate after injury. N6-methyladenosine (m6A) methylation catalyzed by the enzyme methyltransferase-like 3 (Mettl3) plays an important role in various physiological and pathological bioprocesses. However, the role of m6A in heart regeneration remains largely unclear. To study m6A function in heart regeneration, we modulated Mettl3 expression in vitro and in vivo. Knockdown of Mettl3 significantly increased the proliferation of cardiomyocytes and accelerated heart regeneration following heart injury in neonatal and adult mice. However, Mettl3 overexpression decreased cardiomyocyte proliferation and suppressed heart regeneration in postnatal mice. Conjoint analysis of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq identified Fgf16 as a downstream target of Mettl3-mediated m6A modification during postnatal heart regeneration. RIP-qPCR and luciferase reporter assays revealed that Mettl3 negatively regulates Fgf16 mRNA expression in an m6A-Ythdf2-dependent manner. The silencing of Fgf16 suppressed the proliferation of cardiomyocytes. However, the overexpression of ΔFgf16, in which the m6A consensus sequence was mutated, significantly increased cardiomyocyte proliferation and accelerated heart regeneration in postnatal mice compared with wild-type Fgf16. Our data demonstrate that Mettl3 post-transcriptionally reduces Fgf16 mRNA levels through an m6A-Ythdf2-dependen pathway, thereby controlling cardiomyocyte proliferation and heart regeneration.


Cardiovascular diseases are one of the world's biggest killers. Even for patients who survive a heart attack, recovery can be difficult. This is because ­ unlike some amphibians and fish ­ humans lack the ability to produce enough new heart muscle cells to replace damaged tissue after a heart injury. In other words, the human heart cannot repair itself. Molecules known as messenger RNA (mRNA) carry the 'instructions' from the DNA inside the cell nucleus to its protein-making machinery in the cytoplasm of the cell. These messenger molecules can also be altered by different enzymes that attach or remove chemical groups. These modifications can change the stability of the mRNA, or even 'silence' it altogether by stopping it from interacting with the protein-making machinery, thus halting production of the protein it encodes. For example, a protein called Mettl3 can attach a methyl group to a specific part of the mRNA, causing a reversible mRNA modification known as m6A. This type of alteration has been shown to play a role in many conditions, including heart disease, but it has been unclear whether m6A could also be important for the regeneration of heart tissue. To find out more, Jiang, Liu, Chen et al. studied heart injury in mice of various ages. Newborn mice can regenerate their heart muscle for a short time, but adult mice lack this ability, which makes them a useful model to study heart disease. Analyses of the proteins and mRNAs in mouse heart cells confirmed that both Mettl3 and m6A-modified mRNAs were present. The amount of each also increased with age. Next, experiments in genetically manipulated mice revealed that removing Mettl3 greatly improved tissue repair after heart injury in both newborn and adult mice. In contrast, mouse hearts that produced abnormally high quantities of Mettl3 were unable to regenerate ­ even if the mice were young. Moreover, a detailed analysis of gene activity revealed that Mettl3 was suppressing heart regeneration by decreasing the production of a growth-promoting protein called FGF16. These results reveal a key biological mechanism controlling the heart's ability to repair itself after injury. In the future, Jiang et al. hope that Mettl3 can be harnessed for new, effective therapies to promote heart regeneration in patients suffering from heart disease.


Asunto(s)
Metiltransferasas , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/metabolismo , Metilación , Factores de Transcripción/metabolismo , Proliferación Celular
14.
Theranostics ; 11(1): 268-291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391474

RESUMEN

Promotion of cardiac angiogenesis in ischemic myocardium is a critical strategy for repairing and regenerating the myocardium after myocardial infarction (MI). Currently, effective methods to aid in the survival of endothelial cells, to avoid apoptosis in ischemic myocardium and to achieve long-term cardiac angiogenesis are still being pursued. Here, we investigated whether cardiac telocyte (CT)-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells to facilitate cardiac angiogenesis during MI. Methods: CT exosomes were isolated from CT conditioned medium, and their miRNA profile was characterized by small RNA sequencing. A rat model of left anterior descending coronary artery ligation (LAD)-mediated MI was assessed with histology for infarct size and fibrosis, immunostaining for angiogenesis and cell apoptosis and echocardiography to evaluate the therapeutic effects. Cardiac microvascular endothelial cells (CMECs) and the LAD-MI model treated with CT exosomes or CT exosomal miRNA-21-5p in vitro and in vivo were assessed with cellular and molecular techniques to demonstrate the underlying mechanism. Results: CTs exert therapeutic effects on MI via the potent paracrine effects of CT exosomes to facilitate the inhibition of apoptosis and survival of CMECs and promote cardiac angiogenesis. A novel mechanism of CTs is revealed, in which CT-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells in the pathophysiological myocardium. CT exosomal miRNA-21-5p targeted and silenced the cell death inducing p53 target 1 (Cdip1) gene and thus down-regulated the activated caspase-3, which then inhibited the apoptosis of recipient endothelial cells under ischemic and hypoxic conditions, facilitating angiogenesis and regeneration following MI. Conclusions: The present study is the first to show that CTs inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted Cdip1 silencing to improve angiogenesis in myocardial infarction. It is believed that these novel findings and the discovery of cellular and molecular mechanisms will provide new opportunities to tailor novel cardiac cell therapies and cell-free therapies for the functional and structural regeneration of the injured myocardium.


Asunto(s)
Apoptosis , Células Endoteliales/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Neovascularización Fisiológica , Regeneración/fisiología , Telocitos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Supervivencia Celular , Medios de Cultivo Condicionados , Microvasos , Infarto del Miocardio/patología , Miocardio/patología , Ratas , Telocitos/fisiología
15.
NPJ Regen Med ; 6(1): 36, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188056

RESUMEN

Cardiovascular disease is the leading cause of death in the world due to losing regenerative capacity in the adult heart. Frogs possess remarkable capacities to regenerate multiple organs, including spinal cord, tail, and limb, but the response to heart injury and the underlying molecular mechanism remains largely unclear. Here we demonstrated that cardiomyocyte proliferation greatly contributes to heart regeneration in adult X. tropicalis upon apex resection. Using RNA-seq and qPCR, we found that the expression of Fos-like antigen 1 (Fosl1) was dramatically upregulated in early stage of heart injury. To study Fosl1 function in heart regeneration, its expression was modulated in vitro and in vivo. Overexpression of X. tropicalis Fosl1 significantly promoted the proliferation of cardiomyocyte cell line H9c2. Consistently, endogenous Fosl1 knockdown suppressed the proliferation of H9c2 cells and primary cardiomyocytes isolated from neonatal mice. Taking use of a cardiomyocyte-specific dominant-negative approach, we show that blocking Fosl1 function leads to defects in cardiomyocyte proliferation during X. tropicalis heart regeneration. We further show that knockdown of Fosl1 can suppress the capacity of heart regeneration in neonatal mice, but overexpression of Fosl1 can improve the cardiac function in adult mouse upon myocardium infarction. Co-immunoprecipitation, luciferase reporter, and ChIP analysis reveal that Fosl1 interacts with JunB and promotes the expression of Cyclin-T1 (Ccnt1) during heart regeneration. In conclusion, we demonstrated that Fosl1 plays an essential role in cardiomyocyte proliferation and heart regeneration in vertebrates, at least in part, through interaction with JunB, thereby promoting expression of cell cycle regulators including Ccnt1.

16.
BMC Dev Biol ; 10: 32, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20334703

RESUMEN

BACKGROUND: Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis. RESULTS: In this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II. CONCLUSION: Our results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm.


Asunto(s)
Embrión de Pollo , Condrogénesis , Extremidades/embriología , Proteínas Wnt/metabolismo , Animales , Colágeno Tipo II/metabolismo , Ectodermo/metabolismo , Factor de Transcripción SOX9/metabolismo
17.
BMC Dev Biol ; 10: 91, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20807426

RESUMEN

BACKGROUND: Cells of the epithelially organised dermomyotome are traditionally believed to give rise to skeletal muscle and dermis. We have previously shown that the dermomyotome can undergo epithelial-mesenchymal transition (EMT) and give rise to chondrogenic cells, which go on to form the scapula blade in birds. At present we have little understanding regarding the issue of when the chondrogenic fate of dermomyotomal cells is determined. Using quail-chick grafting experiments, we investigated whether scapula precursor cells are committed to a chondrogenic fate while in an epithelial state or whether commitment is established after EMT. RESULTS: We show that the hypaxial dermomyotome, which normally forms the scapula, does not generate cartilaginous tissue after it is grafted to the epaxial domain. In contrast engraftment of the epaxial dermomyotome to the hypaxial domain gives rise to scapula-like cartilage. However, the hypaxial sub-ectodermal mesenchyme (SEM), which originates from the hypaxial dermomyotome after EMT, generates cartilaginous elements in the epaxial domain, whereas in reciprocal grafting experiments, the epaxial SEM cannot form cartilage in the hypaxial domain. CONCLUSIONS: We suggest that the epithelial cells of the dermomyotome are not committed to the chondrogenic lineage. Commitment to this lineage occurs after it has undergone EMT to form the sub-ectodermal mesenchyme.


Asunto(s)
Condrocitos/citología , Epitelio/embriología , Mesodermo/embriología , Codorniz/embriología , Escápula/embriología , Animales , Cartílago/citología , Cartílago/embriología , Embrión de Pollo , Pollos , Condrocitos/metabolismo , Mesodermo/citología , Escápula/citología
18.
J Anat ; 216(4): 482-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20136669

RESUMEN

The scapula is the main skeletal element of the pectoral girdle allowing muscular fixation of the forelimb to the axial skeleton. The vertebrate limb skeleton has traditionally been considered to develop from the lateral plate mesoderm, whereas the musculature originates from the axial somites. However, in birds, the scapular blade has been shown to develop from the somites. We investigated whether a somitic contribution was also present in the mammalian scapula. Using genetic lineage-tracing techniques, we show that the medial border of the mammalian scapula develops from somitic cells. The medial scapula border serves as the attachment site of girdle muscles (serratus anterior, rhomboidei and levator scapulae). We show that the development of these muscles is independent of the mechanism that controls the formation of all other limb muscles. We suggest that these muscles be specifically referred to as medial girdle muscles. Our results establish the avian scapular blade and medial border of the mammalian scapula as homologous structures as they share the same developmental origin.


Asunto(s)
Escápula/embriología , Somitos/fisiología , Animales , Evolución Biológica , Aves , Diferenciación Celular/fisiología , Humanos , Ratones , Modelos Biológicos , Factores de Transcripción Paired Box/genética , Escápula/anatomía & histología
19.
Gene Expr Patterns ; 35: 119091, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31770608

RESUMEN

The forkhead-box transcription factors of O subfamily (FOXO) play important roles in regulation of various biological functions. We cloned foxo1, foxo3, foxo4, and foxo6 from Xenopus tropicalis (hereafter X. tropicalis), and examined their expression in embryos and adult tissues. Maternal transcripts of foxo1 and foxo3 genes are detected within the animal half of the early embryo, their zygotic transcripts show distinct patterns. At late tailbud stages, foxo1 expression is observed mainly in eye, brain, branchial arches, and pronephros. In addition to eye, brain, branchial arches and pronephros, foxo3 expression is also evident in heart and somites. Foxo4 expression was not detected in oocytes. At late tailbud stages, foxo4 is mainly expressed in eye, brain, branchial arches and otic vesicle. Foxo6 expression was not detectable until stage 36, with a specific expression in nasal pits. Obvious expression of foxo1, foxo3 and foxo4, but not foxo6, is detected by RT-PCR both in oocytes and in embryos at examined stages. The expression of foxo1, foxo3 and foxo4 is observed in all tested adult tissues including heart, muscle, liver, lung, stomach and small intestine, while foxo6 is only detectable in stomach and small intestine. The differential expression pattern of foxo genes suggests that they exert distinct functions during embryonic development and in various organs of X. tropicalis.


Asunto(s)
Proteínas Anfibias/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Anfibias/metabolismo , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Bronquios/embriología , Bronquios/metabolismo , Ojo/embriología , Ojo/metabolismo , Factores de Transcripción Forkhead/metabolismo , Corazón/embriología , Riñón/embriología , Riñón/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Miocardio/metabolismo , Xenopus
20.
Aging Cell ; 18(5): e12990, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31264342

RESUMEN

Paraquat (PQ) promotes cell senescence in brain tissue, which contributes to Parkinson's disease. Furthermore, PQ induces heart failure and oxidative damage, but it remains unknown whether and how PQ induces cardiac aging. Here, we demonstrate that PQ induces phenotypes associated with senescence of cardiomyocyte cell lines and results in cardiac aging-associated phenotypes including cardiac remodeling and dysfunction in vivo. Moreover, PQ inhibits the activation of Forkhead box O3 (FoxO3), an important longevity factor, both in vitro and in vivo. We found that PQ-induced senescence phenotypes, including proliferation inhibition, apoptosis, senescence-associated ß-galactosidase activity, and p16INK4a expression, were significantly enhanced by FoxO3 deficiency in cardiomyocytes. Notably, PQ-induced cardiac remolding, apoptosis, oxidative damage, and p16INK4a expression in hearts were exacerbated by FoxO3 deficiency. In addition, both in vitro deficiency and in vivo deficiency of FoxO3 greatly suppressed the activation of antioxidant enzymes including catalase (CAT) and superoxide dismutase 2 (SOD2) in the presence of PQ, which was accompanied by attenuation in cardiac function. The direct in vivo binding of FoxO3 to the promoters of the Cat and Sod2 genes in the heart was verified by chromatin immunoprecipitation (ChIP). Functionally, overexpression of Cat or Sod2 alleviated the PQ-induced senescence phenotypes in FoxO3-deficient cardiomyocyte cell lines. Overexpression of FoxO3 and CAT in hearts greatly suppressed the PQ-induced heart injury and phenotypes associated with aging. Collectively, these results suggest that FoxO3 protects the heart against an aging-associated decline in cardiac function in mice exposed to PQ, at least in part by upregulating the expression of antioxidant enzymes and suppressing oxidative stress.


Asunto(s)
Envejecimiento/metabolismo , Antioxidantes/metabolismo , Proteína Forkhead Box O3/metabolismo , Paraquat/antagonistas & inhibidores , Sustancias Protectoras/metabolismo , Regulación hacia Arriba , Envejecimiento/efectos de los fármacos , Animales , Catalasa/genética , Catalasa/metabolismo , Corazón/efectos de los fármacos , Ratones , Ratones Noqueados , Paraquat/farmacología , Fenotipo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA