Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Biomed Sci ; 29(1): 102, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457101

RESUMEN

BACKGROUND: yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS: The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS: After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS: Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.


Asunto(s)
Salmonella typhimurium , Transcriptoma , Humanos , Salmonella typhimurium/genética , NAD , Ubiquinona , Células CACO-2 , Peróxido de Hidrógeno/farmacología , Vitamina K 2 , Respiración de la Célula , Estrés Oxidativo/genética , Adenosina Trifosfato , Carbohidratos
2.
Mikrochim Acta ; 188(10): 358, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596766

RESUMEN

An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO3 and NaBH4. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques. The nanocomposite material was deposited on a glassy carbon electrode (GCE) and the redox behavior of AgNPs was confirmed by cyclic voltammetry. The electrocatalytic activities of DNA bases were analyzed by differential pulse voltammetry (DPV) in a physiological environment (PBS; pH = 7.0) based on simple and easy-to-use electrocatalyst. The AgNPs-COF/GCE showed well-defined anodic peak currents for the bases guanine (+ 0.63 V vs. Ag/AgCl), adenine (+ 0.89 V vs. Ag/AgCl), thymine (+ 1.10 V vs. Ag/AgCl), and cytosine (+ 1.26 V vs. Ag/AgCl) in a mixture as well as individuals with respect to the conventional, COF, and AgNPs/GCEs. The AgNPs-COF/GCE showed linear concentration range of DNA bases from 0.2-1000 µM (guanine; (G)), 0.1-500 µM (adenine (A)), 0.25-250 µM (thymine (T)) and 0.15-500 µM (cytosine (C)) and LOD of 0.043, 0.056, 0.062, and 0.051 µM (S/N = 3), respectively. The developed sensor showed reasonable selectivity, reproducibility (RSD = 1.53 ± 0.04%-2.58 ± 0.02% (n = 3)), and stability (RSD = 1.22 ± 0.06%-2.15 ± 0.04%; n = 3) over 5 days of storage) for DNA bases. Finally, AgNPs-COF/GCE was used for the determination of DNA bases in human blood serum, urine and saliva samples with good recoveries (98.60-99.11%, 97.80-99.21%, and 98.69-99.74%, respectively).


Asunto(s)
Estructuras Metalorgánicas
3.
Mikrochim Acta ; 187(12): 650, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33165679

RESUMEN

A copper-1,4-naphthalenedicarboxylic acid-based organic framework (Cu-NDCA MOF) with different morphologies was synthesized by solvothermal synthetic route via a simple protonation-deprotonation approach. The synthesized Cu-NDCA MOFs were analyzed by diverse microscopic and spectral techniques. The FE-SEM and TEM image results exhibited the flake-like (FL), partial anisotropic (PAT), and anisotropic (AT)-Cu-NDCA MOFs formation obtained at different pH (3.0, 7.0, and 9.0) of the reaction medium. The AT-Cu-NDCA MOF/GC electrode not only increases the electroactive surface area but also boosts the electron transfer rate reaction compared to other modified electrodes (PAT- and FL-Cu-NDCA MOFs/GCEs). Under the optimized conditions, the modified electrode (AT-Cu-NDCA MOF) exhibited a sharp oxidation peak (+ 0.46 V vs. Ag/AgCl) and higher current response for rutin. The electrode provides a wide linear range from 1 × 10-9 to 50 × 10-6 M, a low detection limit of 1.21 × 10-10 M, LOQ of 0.001 µM, and sensitivity of 0.149 µA µM-1 cm-2. The AT-Cu-NDCA MOF/GC electrode exhibited good stability (RSD = 3.52 ± 0.02% over 8 days of storage), and excellent reproducibility (RSD = 2.62 ± 0.02% (n = 3)). The modified electrode was applied to the determination of rutin in apple, orange, and lemon samples with good recoveries (99.79-99.91, 99.24-99.69, and 99.53-99.83, respectively). Graphical abstract Anisotropic structure of Cu-NDCA MOFs and its modification on glassy carbon electrode for ultra-sensitive determination of rutin in fruit samples.


Asunto(s)
Cobre/química , Técnicas Electroquímicas/métodos , Estructuras Metalorgánicas/química , Preparaciones Farmacéuticas/química , Tensoactivos/química , Catálisis , Límite de Detección , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Protones , Reproducibilidad de los Resultados , Rutina/análisis , Difracción de Rayos X
4.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325883

RESUMEN

Designing and engineering nanocomposites with tailored physiochemical properties through teaming distinct components is a straightforward strategy to yield multifunctional materials. Here, we describe a rapid, economical, and green one-pot microwave synthetic procedure for the preparation of ternary nanocomposites carbon/polydopamine/Au nanoparticles (C/PDA/AuNPs; C = carbon nanotubes (CNTs), reduced graphene oxide (rGO)). No harsh reaction conditions were used in the method, as are used in conventional hydrothermal or high-temperature methods. The PDA unit acts as a non-covalent functionalizing agent for carbon, through π stacking interactions, and also as a stabilizing agent for the formation of AuNPs. The CNTs/PDA/AuNPs modified electrode exhibited excellent electrocatalytic activity to oxidize chloramphenicol and the resulting sensor exhibited a low detection limit (36 nM), wide linear range (0.1-534 µM), good selectivity (against 5-fold excess levels of interferences), appreciable reproducibility (3.47%), good stability (94.7%), and practicality (recoveries 95.0%-98.4%). Likewise, rGO/PDA/AuNPs was used to fabricate a sensitive folic acid sensor, which exhibits excellent analytical parameters, including wide linear range (0.1-905 µM) and low detection limit (25 nM). The described synthetic route includes fast reaction time (5 min) and a readily available household microwave heating device, which has the potential to significantly contribute to the current state of the field.


Asunto(s)
Carbono , Técnicas de Química Sintética , Oro , Indoles/síntesis química , Nanopartículas del Metal , Polímeros/síntesis química , Biopolímeros , Técnicas Biosensibles , Carbono/química , Catálisis , Composición de Medicamentos , Técnicas Electroquímicas , Electrodos , Ácido Fólico , Oro/química , Indoles/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Polímeros/química , Difracción de Rayos X
5.
Anal Chem ; 90(21): 12631-12638, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350617

RESUMEN

A first-of-a-kind latent electrochemical redox probe, ferrocene carbamate phenyl acrylate (FCPA), was developed for the selective detection of cysteine (Cys) and aminoacylase (ACY-1). The electrochemical signal generated by this probe was shown to be highly specific to Cys and insensitive to other amino acids and biological redox reactants. The FCPA-incorporated electrochemical sensor exhibited a broad dynamic range of 0.25-100 µM toward Cys. This probe also proficiently monitored the ACY-1-catalyzed biochemical transformation of N-acetylcysteine (NAC) into Cys, and this proficiency was used to develop an electrochemical assay for quantifying active ACY-1, which it did so in a dynamic range of 10-200 pM (0.1-2 mU/cm3) with a detection limit of 1 pM (0.01 mU/cm3). Furthermore, the probe was utilized in real-time tracking and quantification of cellular Cys production, specifically in Escherichia coli W3110, along with a whole blood assay to determine levels of Cys and spiked ACY-1 in blood with a reliable analytical performance.


Asunto(s)
Acrilatos/química , Amidohidrolasas/sangre , Cisteína/sangre , Técnicas Electroquímicas/métodos , Pruebas de Enzimas/métodos , Metalocenos/química , Acetilcisteína/química , Amidohidrolasas/química , Escherichia coli/química , Humanos , Límite de Detección
6.
Molecules ; 22(4)2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422079

RESUMEN

The natural product, rutaecarpine (RUT), is the main effective component of Evodia rutaecarpa which is a widely used traditional Chinese medicine. It has vasodilation, anticoagulation, and anti-inflammatory activities. However, further therapeutic applications are limited by its cytotoxicity. Thus, a derivative of RUT, 10-fluoro-2-methoxyrutaecarpine (F-RUT), was designed and synthesized that showed no cytotoxicity toward RAW264.7 macrophages at 20 µM. In an anti-inflammation experiment, it inhibited the production of nitric oxide (NO) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages; cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) induced by LPS were also downregulated. After 24 h of treatment, F-RUT significantly inhibited cell migration and invasion of ovarian A2780 cells. Furthermore, F-RUT promoted expressions of transient receptor potential vanilloid type 1 (TRPV1) and endothelial (e)NOS in human aortic endothelial cells, and predominantly reduced the inflammation in ovalbumin/alum-challenged mice. These results suggest that the novel synthetic F-RUT exerts activities against inflammation and vasodilation, while displaying less toxicity than its lead compound.


Asunto(s)
Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/farmacología , Quinazolinas/síntesis química , Quinazolinas/farmacología , Canales Catiónicos TRPV/agonistas , Animales , Movimiento Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Fluoresc ; 26(4): 1489-95, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27290640

RESUMEN

The development of sensitive fluorescence probes to detect biothiols such as cysteine and homocysteine has attracted great attention in recent times. Herein, we described the design and synthesis of coumarin based long-wavelength fluorescence probe, Bromo-2-benzothiazolyl-3-cyano-7-hydroxy coumarin (BBCH, 2) for selective detections of cysteine and homocysteine. The probe is rationally designed in such a way that both sulfhydryl and adjacent amino groups of thiols are involved in sensing process. Only cysteine/homocysteine able to react with BBCH to release fluorescence reporter (BCH, 1); while, glutathione and other amino acids unable to react with BBCH due to the absence of adjacent amino groups. In presence of cysteine, the color of BBCH is turns from colorless to red and thus BBCH is a naked eye fluorescence indicator for cysteine. Besides, BBCH can discriminate cysteine and homocysteine based on color changes and different reaction rates. The described sensing platform showed good sensing performances to detect cysteine and homocysteine with detection limits of 0.87 and 0.19 µM, respectively. Practical applicability was verified in biological and pharmaceutical samples.


Asunto(s)
Cisteína/análisis , Colorantes Fluorescentes/química , Homocisteína/análisis , Límite de Detección , Animales , Bovinos , Cumarinas/química , Cisteína/química , Cisteína/orina , Homocisteína/química , Homocisteína/orina , Humanos , Albúmina Sérica Bovina/química
8.
Analyst ; 140(1): 346-52, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25407410

RESUMEN

We prepared an off-on fluorometric probe, DPF1, by incorporating the concept of autoinductive signal amplification into its molecular design. In the presence of fluoride, DPF1 undergoes a cascade of self-immolative reactions concomitant with unmasking fluorogenic coumarin, which results in the ejection of two fluoride ions. These fluoride ions are continuously activating the cascade reaction and accumulating coumarins, which leads to exponentially amplifying the signal with high sensitivity. The fluorescence signal generated by this cascade reaction is rapid, specific and insensitive to other anions. Its limit of detection was 0.5 pM, considerably lower than other current methods of fluoride detection. In addition, DCC, a long wavelength fluorometric probe, was prepared. Interestingly, an assay platform coupling DPF1 and DCC showed an outstanding sensing ability at higher wavelengths, suggesting that this can be a promising method for the sensitive and selective detection of fluoride in biological samples. The practical applicability of the proposed approach has been demonstrated in urine and water samples.


Asunto(s)
Colorantes Fluorescentes/química , Fluoruros/análisis , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia
9.
Analyst ; 140(17): 6040-6, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26192109

RESUMEN

A 4-Methoxyphenyl-ß-galactopyranoside (4-MPGal) substrate incorporating 4-methoxy phenol (4-MP) as an electrochemical reporter is described for the monitoring of ß-Galactosidase (ß-Gal) gene expressions. ß-Gal derived from Escherichia coli (E. coli) and Aspergillus oryzae (A. oryzae) were investigated, while a graphene oxide film modified electrode was employed as the transducer. The electrochemical signal of 4-MPG within 4-MPGal was masked by protecting their hydroxyl group with galactose. The externally added ß-Gal triggered the deprotection through specific enzymatic hydrolysis with concomitant release of 4-MP. The apparent Km and Vmax values of 4-MPGal are determined to be 0.21 mM and 0.51 µM min(-1) mg of ß-Gal(-1) (E. coli), which is consistent with the previous reports. To detect ß-Gal derived from E. coli, cyclic voltammetry (CV) provides linear ranges of 12-1200 ng mL(-1) and 1.2-12 µg mL(-1) with a limit of detection (LOD) of 5 ng mL(-1), while differential pulse voltammetry (DPV) shows a linear range of 1.2-120 ng mL(-1) and LOD of 1 ng mL(-1). To detect ß-Gal derived from A. oryzae, CV provides linear ranges of 0.1-100 ng mL(-1) and 0.1-1 µg mL(-1) with a LOD of 0.06 ng mL(-1), while DPV shows a linear range of 10 pg mL(-1)-10 ng mL(-1) with a LOD of 8 pg mL(-1). Moreover, we set up a platform for the real-time in vivo monitoring of ß-Gal gene expressions in E. coli cultivated through microbiological culture. The developed sensing platform using 4-MPGal as a substrate is simple, rapid, sensitive, specific and advantageous over its laborious optical analogues.


Asunto(s)
Técnicas Electroquímicas , Expresión Génica , beta-Galactosidasa/metabolismo , Anisoles/química , Aspergillus oryzae/enzimología , Electrodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Escherichia coli/enzimología , Grafito/química , Hidrólisis , Cinética , Óxidos/química , Especificidad por Sustrato , beta-Galactosidasa/genética
10.
Analyst ; 140(16): 5764-71, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26171468

RESUMEN

Amitrole is a biologically toxic nonselective herbicide which contaminates surface and ground waters at unprecedented rates. All reported modified electrodes that detect amitrole within sub-micromolar to nanomolar levels were based on the electro-oxidation of amitrole. Herein, we developed a new conceptual idea to detect picomolar concentrations of amitrole based on calcium cross linked pectin stabilized gold nanoparticle (CCLP-GNP) film modified electrode which was prepared by electrodeposition. When the electrochemical behavior of amitrole was investigated at the CCLP-GNP film, the reduction peak current of the GNPs linearly decreased as the concentration of amitrole increases. We have designed a determination platform based on the amitrole dependent decrease of the GNP cathodic peak. The described concept and high sensitivity of square wave voltammetry together facilitate the great sensing ability; as a result the described approach is able to reach a low detection limit of 36 pM which surpassed the detection limits of existing protocols. The sensor presents a good ability to determine amitrole in two linear concentration ranges: (1) 100 pM-1500 pM with a detection limit of 36 pM; (2) 100 nM-1500 nM with a detection limit of 20 nM. The preparation of CCLP-GNPs is simple, rapid and does not require any reducing agents.


Asunto(s)
Amitrol (Herbicida)/análisis , Técnicas de Química Analítica/métodos , Oro/química , Nanopartículas/química , Pectinas/química , Amitrol (Herbicida)/química , Calcio/química , Técnicas Electroquímicas , Límite de Detección
11.
Langmuir ; 30(47): 14257-62, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25377994

RESUMEN

A surface that resists protein adsorption and cell adhesion is highly desirable for many biomedical applications such as blood-contact devices and biosensors. In this study, we fabricated a carboxybetaine-containing surface and evaluated its antifouling efficacy. First, an amine-containing substrate was created by chemical vapor deposition of 4-aminomethyl-p-xylylene-co-p-xylylene (Amino-PPX). Aldehyde-ended carboxybetaine molecules were synthesized and conjugated onto Amino-PPX. The carboxybetaine-PPX surface greatly reduced protein adsorption and cell adhesion. The attachment of L929 cells on the carboxybetaine-PPX surface was reduced by 87% compared to the cell adhesion on Amino-PPX. Furthermore, RGD peptides could be conjugated on carboxybetaine-PPX to mediate specific cell adhesion. In conclusion, we demonstrate that a surface decoration with monocarboxybetaine molecules is useful for antifouling applications.


Asunto(s)
Compuestos de Anilina/química , Betaína/química , Polímeros/química , Proteínas/química , Adsorción , Adhesión Celular/efectos de los fármacos , Propiedades de Superficie
12.
Food Chem ; 459: 140451, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39029424

RESUMEN

Bisphenols threaten human health and sensitive detection is crucial. The present study aims to develop ternary composites of copper metal-organic framework (Cu-MOF) with AuAg microstructures. The composite structure was formed by a galvanic displacement reaction and confirmed using SEM. A binder-free catalyst was used to study the electrochemical redox reaction of bisphenol A (BPA) and bisphenol S (BPS); an irreversible cyclic voltammetric signal at +0.70 V and + 0.91 V (vs. Ag/AgCl), in the dynamic range of 20 nM to 2.0 mM, and 10 nM to 1.0 mM, with limits of detection of 2.9 nM, and 3.2 nM (S/N = 3) was obtained. Practical analysis was applied to frozen tomatoes, tuna fish, milk powder, PET bottles, raw milk, and urine samples with a recovery rate of 94.00-100.80% (n = 3). Voltammetric results were validated using HPLC detection with high precision. The sensor is a promising alternative platform for measuring BPA in food samples.

13.
ACS Meas Sci Au ; 4(2): 163-183, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38645581

RESUMEN

The development of artificial receptors has great significance in measurement science and technology. The need for a robust version of natural receptors is getting increased attention because the cost of natural receptors is still high along with storage difficulties. Aptamers, imprinted polymers, and nanozymes are some of the matured artificial receptors in analytical chemistry. Recently, a new direction has been discovered by organic chemists, who can synthesize robust, activity-based, self-immolative organic molecules that have artificial receptor properties for the targeted analytes. Specifically designed trigger moieties implant selectivity and sensitivity. These latent electrochemical redox substrates are highly stable, mass-producible, inexpensive, and eco-friendly. Combining redox substrates with the merits of electrochemical techniques is a good opportunity to establish a new direction in artificial receptors. This Review provides an overview of electrochemical redox substrate design, anatomy, benefits, and biosensing potential. A proper understanding of molecular design can lead to the development of a library of novel self-immolative redox molecules that would have huge implications for measurement science and technology.

14.
Biosens Bioelectron ; 261: 116485, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852323

RESUMEN

Developing quantitative biosensors of superoxide (O2•-) and nitric oxide (NO) anion is crucial for pathological research. As of today, the main challenge for electrochemical detection is to develop high-selectivity nano-mimetic materials to replace natural enzymes. In this study, the dendritic-like morphological structure of silver organic framework (Ag-MOF) was successfully synthesized via a solvothermal strategy. Owing to the introduction of polymeric composites results in improved electrical conductivity and catalytic activity, which promotes mass transfer and leads to faster electron efficiency. For monitoring the electrochemical signals of O2•- and NO, the Ag-MOF electrode substrate was produced by drop-coating, and composites were designed by cyclic voltammetric potential cycles. The designed electrode substrates demonstrate high sensitivity, wide linear concentrations of 1 nM-1000 µM and 1 nM-850 µM, and low detection limits of 0.27 nM and 0.34 nM (S/N = 3) against O2•- and NO. Aside from that, the sensor successfully monitored the cellular release of O2•-, and NO from HepG2 and RAW 264.7 living cells and has the potential to monitor exogenous NO release from donors of Diethylamine (DEA)-NONOate and sodium nitroprusside (SNP). Additionally, the developed system was applied to the analysis of O2•- and NO in real biological fluid samples, and the results were good satisfactory (94.10-99.57 ± 1.23%). The designed system provides a novel approach to obtaining a good electrochemical biosensor platform that is highly selective, stable, and flexible. Finally, the proposed method provides a quantitative way to follow the dynamic changes in O2•- and NO in biological systems.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Óxido Nítrico , Superóxidos , Técnicas Biosensibles/métodos , Óxido Nítrico/análisis , Óxido Nítrico/química , Humanos , Superóxidos/análisis , Superóxidos/química , Técnicas Electroquímicas/métodos , Ratones , Animales , Células Hep G2 , Células RAW 264.7 , Catálisis , Límite de Detección , Estructuras Metalorgánicas/química , Plata/química , Biomarcadores/análisis , Donantes de Óxido Nítrico/química
15.
Biosens Bioelectron ; 248: 115996, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183789

RESUMEN

γ-Glutamyl transpeptidase (GGT) is a key biomarker for cancer diagnosis and post-treatment surveillance. Currently available methods for sensing GGT show high potential, but face certain challenges including an inability to be used to directly sense analytes in turbid biofluid samples such as whole blood without tedious sample pretreatment. To overcome this issue, activity-based electrochemical probes (GTLP and GTLPOH) were herein developed for a convenient and specific direct targeting of GGT activity in turbid biosamples. Both probes were designed to have GGT catalyze the hydrolysis of the gamma-glutamyl amide moiety of the probe, and result in a self-immolative reaction and concomitant ejection of the masked amino ferrocene reporter. The GTLPOH probe, delivered distinctive key results including high sensitivity, high affinity, a wide detection range of 2-100 U/L, and low LOD of 0.38 U/L against GGT. This probe delivered a precise target for sensing GGT and was free of interference from other electroactive biological species. Furthermore, the GTLPOH probe was employed to monitor and quantify the activity of GGT on the surfaces of tumor cells. The designed sensing method was also validated by the direct quantitative measurement of GGT activity in whole blood and urine samples, and the results were found to be consistent with those of the standard fluorometric assay kit. Thus, GTLPOH is of great significance for its promise as a point-of-care tool for early-stage cancer diagnosis as well as a new drug screening method.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Humanos , gamma-Glutamiltransferasa , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Amidas , Neoplasias/diagnóstico
16.
Anal Chim Acta ; 1274: 341582, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455066

RESUMEN

Tannic acid (TA) is a water-soluble polyphenol and used in beverages, medical fields as clarifying and additive agents. In daily life, TA is unavoidable, and excessive consumption of tannin containing foods can harm health. Thus, rapid and sensitive quantification is highly necessary. Herein, an eco-friendly fluorometric and electrochemical sensing of TA was developed based on a dysprosium(III)-metal-organic framework (Dy(III)-MOF). An aqueous dispersion of Dy(III)-MOF exhibits strong dual emissions at 479 and 572 nm with an excitation at 272 nm, due to the 4f-4f electronic transition and "antenna effect". Chromophore site of the functional ligand, and Dy(III) ion could potentially serve as a sensing probe for TA via quenching (fluorescence). The fluorometric sensor worked well in a wide linear range concentrations from 0.02 to 25 µM with a limit of detection (LOD) of 0.0053 µM. Secondly, the cyclic voltammetric of TA at Dy(III)-MOF modified screen-printed carbon electrode (SPCE) has been investigated. The Dy(III)-MOF/SPCE showed an anodic peak signal at +0.22 V with a five-fold stronger current than the control electrode surface. Under optimized sensing parameters, the Dy(III)-MOF/SPCE delivered wide linear concentrations from 0.01 to 200 µM with a LOD of 0.0023 µM (S/N = 3). Accessibility of real practical samples in alcoholic and juice-based beverages were quantified, resulting in superior recovery rates (98.13-99.53%), F-test, and t-test confirmed high reliability (<95% confidence level (n = 3)). Finally, practicability result of the electrochemical method was validated by fluorometric with a relative standard deviation (RSD) of 0.18-0.46 ± 0.17% (n = 3). The designed probe has proven to be a key candidate for the accurate analysis of TA in beverage samples to ensure food quality.


Asunto(s)
Frutas , Agua , Reproducibilidad de los Resultados , Carbono , Colorantes Fluorescentes , Bebidas , Taninos
17.
Bioelectrochemistry ; 152: 108434, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37028136

RESUMEN

For clinical research, the precise measurement of hydrogen peroxide (H2O2) and glucose (Glu) is of paramount importance, due to their imbalanced concentrations in blood glucose, and reactive oxygen species (ROS) play a huge role in COVID-19 viral disease. It is critical to construct and develop a simple, rapid, flexible, long-term, and sensitive detection of H2O2 and glucose. In this paper, we have developed a unique morphological structure of MOF(Cu) on a single-walled carbon nanotube-modified gold wire (swnt@gw). Highly designed frameworks with nanotube composites enhance electron rate-transfer behavior while extending conductance and electroactive surface area.The composite sensing system delivers wide linear-range concentrations, low detection limit, and interference-free performance in co-existence with other biomolecules and metal ions. Endogenous quantitative tracking of H2O2 was performed in macrophage live-cells with the help of a strong stimulator lipopolysaccharide.The composite device was effectively utilized for the measurement of H2O2 and glucose in turbid samples of whole blood and milk samples without a pretreatment process. The practical results of biofluids showed favorable voltammetric results and acceptance recovery percentage levels between 97.49 and 98.88%. Finally, a flexible MOF-based hybrid system may provide a suitable detection platform in the construction of electro-biosensors and hold potential promise for clinical-sensory applications.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , Cobre/química , Oro/química , Peróxido de Hidrógeno/química , Glucosa , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
18.
Food Chem ; 414: 135747, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841102

RESUMEN

A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (H2O2) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and H2O2 using hybrid catalyst. Bovine serum albumin (BSA)-capped nanocatalyst was potentially catalyzed 3,3',5,5'-tetramethylbenzidine (TMB), and H2O2. The enzymatic nanoelectrocatalyst delivered a wide range of signaling concentrations from 250 nM to 3.0 mM and 100 nM to 10 mM, limit of detection (LOD) of 53.2 nM and 18.4 nM for Chol and H2O2. The cholesterol oxidase-BSA-AuNPs-metal-free organic framework (ChOx-BSA-AuNPs-MFOF) based electrode surface effectively operated in live-cells and real-food samples. The enzymatic sensor exhibits adequate recovery of real-food samples (96.96-99.44%). Finally, the proposed system is a suitable choice for the potential applications of Chol and H2O2 in clinical and food chemistry.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Peróxido de Hidrógeno/química , Peroxidasa , Oro/química , Nanopartículas del Metal/química , Oxidorreductasas , Peroxidasas , Colorantes , Colesterol , Técnicas Biosensibles/métodos , Colorimetría/métodos , Límite de Detección
19.
Chemosphere ; 328: 138534, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37004821

RESUMEN

Nanomaterials frequently draw a lot of interest in a variety of disciplines, including electrochemistry. Developing a reliable electrode modifier for the selective electrochemical detection of the analgesic bioflavonoid i.e., Rutinoside (RS) is a great challenge. Here in, we have explored the supercritical-CO2 (SC-CO2) mediated synthesis of bismuth oxysulfide (SC-BiOS) and reported it as a robust electrode modifier for the detection of RS. For a comparison study, the same preparation procedure was carried out in the conventional approach (C-BiS). The morphology, crystallography, optical, and elemental contribution analyses were characterized to understand the paradigm shift in the physicochemical properties between SC-BiOS and C-BiS. The results exposed the C-BiS had a nano-rod-like structure with a crystallite size of 11.57 nm; whereas the SC-BiOS had a nano-petal-like structure with a crystallite size of 9.03 nm. The B2g mode in the optical analysis confirms the formation of bismuth oxysulfide by the SC-CO2 method with the Pmnn space group. As an electrode modifier, the SC-BiOS achieved a higher effective surface area (0.074 cm2), higher electron transfer kinetics (0.13 cm s-1), and lower charge transfer resistance (403 Ω) than C-BiS. Further, it provided a wide linear range of 0.1-610.5 µM L-1 with a low detection and quantification limit of 9 and 30nM L-1 and an appreciable sensitivity of 0.706 µA µM-1 cm-2. The selectivity, repeatability, and real-time application towards the environmental water sample with a recovery of 98.87% were anticipated for the SC-BiOS. This SC-BiOS unlocks a fresh avenue to construct a design for the family of electrode modifiers utilized in electrochemical applications.


Asunto(s)
Dióxido de Carbono , Nanotubos , Dióxido de Carbono/química , Bismuto , Transporte de Electrón , Electrodos
20.
Anal Chim Acta ; 1190: 339244, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34857137

RESUMEN

Salmonella contamination is a major concern in food and public health safety, and carrying out episodic monitoring of Salmonella contamination in food and water bodies is essential for safeguarding public health and the economy. Therefore, there is an urgent need to develop an easy-to-operate Salmonella-targeting point-of-care detection platform. To this end, we designed two activity-based latent ratiometric electrochemical molecular substrates, denoted as Sal-CAF and Sal-NBAF, specifically for achieving easy, rapid, and selective profiling of Salmonella esterase (a Salmonella biomarker) under physiological conditions. The octyl esters of the substrates were cleaved by the esterase and triggered the trimethyl lock to eject the electron-rich aminoferrocene derivatives (CAF and NBAF), and the corresponding electrochemical signals were tracked at the negative region (-0.08 V vs Ag/AgCl) of the voltammetric spectrum. The Sal-CAF substrate was used to determine the concentration of Salmonella in a wide dynamic range (1.03 × 105-1.1 × 1010 CFU mL-1) with a low detection limit of 39.27 × 103 CFU mL-1. The developed probes were tested against various bacteria but were only activated by live Salmonella. Furthermore, the Sal-CAF probe was used directly in quantifying spiked live Salmonella spiked in milk samples and also used to effectively monitor and quantify Salmonella production in real-time. These achievements indicated the Sal-CAF probe to be a promising platform for point-of-care Salmonella analysis.


Asunto(s)
Técnicas Biosensibles , Salmonella
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA