Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Bioanal Chem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748246

RESUMEN

Recently, gold nanomaterials have been rapidly developed owing to their high stability, good biocompatibility, and multifunctionality. The unique catalytic activity of gold nanomaterials has driven the emergence of the concept for a "gold nanozyme." Understanding the characteristics of gold nanozymes is crucial for improving their catalytic performance as well as expanding their applications. In this review, we provide an overview of the intrinsic enzyme-like activities of gold nanozymes, including peroxidase-, catalase-, superoxide dismutase-, and glucose oxidase-like activities, and the catalytic mechanisms involved. In addition, strategies for modulating the catalytic activity of gold nanozymes and their applications in biosensing were discussed in detail. Moreover, we highlight the current challenges of gold nanozymes and look forward to attracting more attention for propelling the developments in this field.

2.
Molecules ; 29(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38792244

RESUMEN

Recently, nanomaterials have attracted extensive attention in cancer-targeting therapy and as drug delivery vehicles owing to their unique surface and size properties. Multifunctional combinations of nanomaterials have become a research hotspot as researchers aim to provide a full understanding of their nanomaterial characteristics. In this study, metal-organic framework-capped gold nanorod hybrids were synthesized. Our research explored their ability to kill tumor cells by locally increasing the temperature via photothermal conclusion. The specific peroxidase-like activity endows the hybrids with the ability to disrupt the oxidative balance in vitro. Simultaneously, chemotherapeutic drugs are administered and delivered by loading and transportation for effective combinatorial cancer treatment, thereby enhancing the curative effect and reducing the unpredictable toxicity and side effects of large doses of chemotherapeutic drugs. These studies can improve combinatorial cancer therapy and enhance cancer treatment.


Asunto(s)
Antineoplásicos , Oro , Estructuras Metalorgánicas , Nanotubos , Neoplasias , Oro/química , Nanotubos/química , Estructuras Metalorgánicas/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Nanopartículas del Metal/química , Animales
3.
Chemistry ; 29(34): e202300454, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37026579

RESUMEN

Au nanoparticles (NPs) have been proven to be excellent glucose oxidase (GOx) mimics, which can catalyze the electrons transform pathway from glucose to oxygen. This study confirmed AuNPs can accelerate the reaction between [Ag(NH3 )2 ]+ and glucose under alkaline conditions, which is also known as the Tollens' reaction, and the possible mechanism was proposed. Here, [Ag(NH3 )2 ]+ instead of O2 acted directedly as an electron acceptor during glucose oxidation catalyzed by AuNPs, accompanied by hydrogen transfer. The as-synthesized Ag nanoparticles can also catalyze this process, similar to AuNPs, via a unique cascading catalysis mechanism in the Tollens' reaction. A simple and heatless glucose colorimetric assay can be established based on the plasmonic band of AgNPs with a liner range of 0.6-22.2 µM, and the limit of detection is 0.32 µM.


Asunto(s)
Glucosa Oxidasa , Nanopartículas del Metal , Oro , Plata , Glucosa , Colorimetría , Catálisis , Peróxido de Hidrógeno
4.
Mikrochim Acta ; 189(10): 378, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076043

RESUMEN

A new nanozyme (Cu-NADH) is reported composed of Cu-coordinated nicotinamide adenine dinucleotide (NADH) exhibiting laccase-like activity. The Cu-NADH nanozyme had higher heat tolerance and catalytic efficiency than natural laccase, and its catalytic activity can be enhanced by high concentration of Cl ions and it is intensely inhibited by phosphate. Therefore, a colorimetric method based on Cu-NADH and indigo carmine was successfully developed to detect phosphate in water. This method showed an excellent selectivity for phosphate, and it had a linear relationship in the phosphate concentration range 2-50 µM with a detection limit of 0.37 µM. We believe that this example of coordination between metal ions and biomolecules to mimic natural enzymes can inspire more effective and alternative strategies in nanozyme design and expand their use in sensing and determination.


Asunto(s)
Colorimetría , Lacasa , Catálisis , Colorimetría/métodos , NAD , Fosfatos
5.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29915108

RESUMEN

Picocyanobacteria Prochlorococcus and Synechococcus are abundant in the global oceans and subject to active viral infection. In this study, the genetic diversity of picocyanobacteria and the genetic diversity of cyanopodoviruses were synchronously investigated along water columns in the equatorial Indian Ocean and over a seasonal time course in the coastal Sanya Bay, South China Sea. Using the 16S-23S rRNA internal transcribed spacer (ITS)-based clone library and quantitative PCR (qPCR) analyses, the picocyanobacterial community composition and abundance were determined. Sanya Bay was dominated by clade II Synechococcus during all the seasons, and a typical population shift from high-light-adapted Prochlorococcus to low-light-adapted Prochlorococcus was found along the vertical profiles. Strikingly, the DNA polymerase gene sequences of cyanopodoviruses revealed a much greater genetic diversity than we expected. Nearly one-third of the phylogenetic groups were newly described here. No apparent seasonal pattern was observed for the Sanya Bay picocyanobacterial or cyanopodoviral communities. Different dominant cyanopodovirus lineages were identified for the coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean. Diversity indices of both picocyanobacteria and cyanopodoviruses were highest in the middle euphotic zone and both were lower in the upper euphotic zone, reflecting a host-virus interaction. Cyanopodoviral communities differed significantly between the upper euphotic zone and the middle-to-lower euphotic zone, showing a vertical pattern similar to that of picocyanobacteria. However, in the surface waters of the open ocean, cyanopodoviruses exhibited no apparent biogeographic pattern, differing from picocyanobacteria. This study demonstrates correlated distribution patterns of picocyanobacteria and cyanopodoviruses, as well as the complex biogeography of cyanopodoviruses.IMPORTANCE Picocyanobacteria are highly diverse and abundant in the ocean and display remarkable global biogeography and a vertical distribution pattern. However, how the diversity and distribution of picocyanobacteria affect those of the viruses that infect them remains largely unknown. Here we synchronously analyzed the community structures of cyanopodoviruses and picocyanobacteria at spatial and temporal scales. Both spatial and temporal variations of cyanopodoviral communities can be linked to those of picocyanobacteria. The coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean have distinct cyanopodoviral communities, showing horizontal and vertical variation patterns closely related to those of picocyanobacteria. These findings emphasize the driving force of host community in shaping the biogeographic structure of viruses. Our work provides important information for future assessments of the ecological roles of viruses and hosts for each other.


Asunto(s)
Variación Genética , Consorcios Microbianos , Podoviridae/genética , Prochlorococcus/genética , Synechococcus/genética , China , ADN Espaciador Ribosómico/genética , Interacciones Microbianas , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Estaciones del Año , Agua de Mar/microbiología , Agua de Mar/virología
6.
Environ Microbiol ; 18(6): 1930-41, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26530871

RESUMEN

Climate change and anthropogenic factors can alter biodiversity and can lead to changes in community structure and function. Despite the potential impacts, no long-term records of climatic influences on microbial communities exist. The Tibetan Plateau is a highly sensitive region that is currently undergoing significant alteration resulting from both climate change and increased human activity. Ice cores from glaciers in this region serve as unique natural archives of bacterial abundance and community composition, and contain concomitant records of climate and environmental change. We report high-resolution profiles of bacterial density and community composition over the past half century in ice cores from three glaciers on the Tibetan Plateau. Statistical analysis showed that the bacterial community composition in the three ice cores converged starting in the 1990s. Changes in bacterial community composition were related to changing precipitation, increasing air temperature and anthropogenic activities in the vicinity of the plateau. Collectively, our ice core data on bacteria in concert with environmental and anthropogenic proxies indicate that the convergence of bacterial communities deposited on glaciers across a wide geographical area and situated in diverse habitat types was likely induced by climatic and anthropogenic drivers.


Asunto(s)
Bacterias/aislamiento & purificación , Cubierta de Hielo/microbiología , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Cambio Climático , Ecosistema , Temperatura , Tibet
7.
Curr Microbiol ; 73(3): 409-418, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27270945

RESUMEN

Three bacteriophages (RD-1410W1-01, RD-1410Ws-07, and DS-1410Ws-06) were isolated from the surface water of Sanya Bay, northern South China Sea, on two marine bacteria type strains of the Roseobacter lineage. These phages have an isometric head and a short tail, morphologically belonging to the Podoviridae family. Two of these phages can infect four of seven marine roseobacter strains tested and the other one can infect three of them, showing relatively broader host ranges compared to known N4-like roseophages. One-step growth curves showed that these phages have similar short latent periods (1-2 h) but highly variable burst sizes (27-341 pfu cell(-1)). Their complete genomes show high level of similarities to known N4-like roseophages in terms of genome size, G + C content, gene content, and arrangement. The morphological and genomic features of these phages indicate that they belong to the N4likevirus genus. Moreover, comparative genomic analysis based on 43 N4-like phages (10 roseobacter phages and 33 phages infecting other lineages of bacteria) revealed a core genome of 18 genes shared by all the 43 phages and 38 genes shared by all the ten roseophages. The 38 core genes of N4-like roseophages nearly make up 70 % of each genome in length. Phylogenetic analysis based on the concatenated core gene products showed that our phage isolates represent two new phyletic branches, suggesting the broad genetic diversity of marine N4-like roseophages remains.


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Podoviridae/genética , Roseobacter/virología , Agua de Mar/virología , Bacteriófagos/clasificación , Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/fisiología , Composición de Base , Secuencia de Bases , China , ADN Viral/genética , Especificidad del Huésped , Datos de Secuencia Molecular , Filogenia , Podoviridae/clasificación , Podoviridae/aislamiento & purificación , Proteínas Virales/genética
8.
Appl Environ Microbiol ; 81(1): 441-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362060

RESUMEN

Myoviruses and podoviruses that infect cyanobacteria are the two major groups of marine cyanophages, but little is known of how their phylogenetic lineages are distributed in different habitats. In this study, we analyzed the phylogenetic relationships of cyanopodoviruses and cyanomyoviruses based on the existing genomes. The 28 cyanomyoviruses were classified into four clusters (I to IV), and 19 of the 20 cyanopodoviruses were classified into two clusters, MPP-A and MPP-B, with four subclusters within cluster MPP-B. These genomes were used to recruit cyanophage-like fragments from microbial and viral metagenomes to estimate the relative abundances of these cyanophage lineages. Our results showed that cyanopodoviruses and cyanomyoviruses are both abundant in various marine environments and that clusters MPP-B, II and III appear to be the most dominant lineages. Cyanopodoviruses and cluster I and IV cyanomyoviruses exhibited habitat-related variability in their relative levels of abundance, while cluster II and III cyanomyoviruses appeared to be consistently dominant in various habitats. Multivariate analyses showed that reads that mapped to Synechococcus phages and Prochlorococcus phages had distinct distribution patterns that were significantly correlated to those of Synechococcus and Prochlorococcus, respectively. The Mantel test also revealed a strong correlation between the community compositions of cyanophages and picocyanobacteria. Given that cyanomyoviruses tend to have a broad host range and some can cross-infect Synechococcus and Prochlorococcus, while cyanopodoviruses are commonly host specific, the observation that their community compositions both correlated significantly with that of picocyanobacteria was unexpected. Although cyanomyoviruses and cyanopodoviruses differ in host specificity, their biogeographic distributions are likely both constrained by the picocyanobacterial community.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/genética , Cianobacterias/virología , Océanos y Mares , Filogeografía , Agua de Mar/virología , Bacteriófagos/aislamiento & purificación , Análisis por Conglomerados , Genoma Viral , Myoviridae/clasificación , Myoviridae/genética , Myoviridae/aislamiento & purificación , Podoviridae/clasificación , Podoviridae/genética , Podoviridae/aislamiento & purificación
9.
Appl Environ Microbiol ; 80(24): 7640-50, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25281375

RESUMEN

The phylogenetic diversity of picocyanobacteria in seven alkaline lakes on the Tibetan Plateau was analyzed using the molecular marker 16S-23S rRNA internal transcribed spacer sequence. A total of 1,077 environmental sequences retrieved from the seven lakes were grouped into seven picocyanobacterial clusters, with two clusters newly described here. Each of the lakes was dominated by only one or two clusters, while different lakes could have disparate communities, suggesting low alpha diversity but high beta diversity of picocyanobacteria in these high-altitude freshwater and saline lakes. Several globally distributed clusters were found in these Tibetan lakes, such as subalpine cluster I and the Cyanobium gracile cluster. Although other clusters likely exhibit geographic restriction to the plateau temporally, reflecting endemicity, they can indeed be distributed widely on the plateau. Lakes with similar salinities may have similar genetic populations despite a large geographic distance. Canonical correspondence analysis identified salinity as the only environmental factor that may in part explain the diversity variations among lakes. Mantel tests suggested that the community similarities among lakes are independent of geographic distance. A portion of the picocyanobacterial clusters appear to be restricted to a narrow salinity range, while others are likely adapted to a broad range. A seasonal survey of Lake Namucuo across 3 years did not show season-related variations in diversity, and depth-related population partitioning was observed along a vertical profile of the lake. Our study emphasizes the high dispersive potential of picocyanobacteria and suggests that the regional distribution may result from adaptation to specified environments.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Lagos/microbiología , Bacterias/clasificación , Biodiversidad , ADN Bacteriano/genética , Ecosistema , Variación Genética , Lagos/análisis , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Tibet
10.
Biotechnol Lett ; 36(8): 1701-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24737084

RESUMEN

A novel endoglucanase gene, mgcel44, was isolated from a mangrove soil metagenomic library by functional-based screening. It encodes a 648-aa peptide with a catalytic domain of glycosyl hydrolase family 44. The deduced amino acid sequence of mgcel44 shares less than 50 % identity with endoglucanases in GenBank database. mgcel44 was cloned and overexpressed in Escherichia coli. The recombinant enzyme, MgCel44, has a molecular mass of 70.8 kDa as determined by SDS-PAGE. Its optimal pH and temperature for activity were 6 and 45 °C, respectively. It was highly active at 25-45 °C and pH 5-8. Its activity was enhanced in 0.5 M NaCl by >1.6-fold and stable up to 1.5 M NaCl. MgCel44 was resistant to several organic solvents and had high activity at 15 % (v/v) solvent after incubating for 24 h at 25 °C.


Asunto(s)
Celulasa/genética , Biblioteca de Genes , Metagenómica , Familia de Multigenes , Suelo , Secuencia de Aminoácidos , Avicennia , Celulasa/química , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Iones , Metales/farmacología , Datos de Secuencia Molecular , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Cloruro de Sodio/farmacología , Solventes/farmacología , Especificidad por Sustrato/efectos de los fármacos , Temperatura
11.
Int J Biol Macromol ; 261(Pt 2): 129726, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290632

RESUMEN

Paclitaxel (PTX) is commonly used in clinical tumor therapy. However, chemoresistance and the inducement of tumor metastasis severely affect the efficacy of PTX. To develop a treatment strategy to reverse chemoresistance, the co-delivery of PTX and small interfering RNA with nanocarriers were programmed in this study. The carrier we have programmed exhibits excellent safety, stability, and delivery efficiency for co-delivery of siRNA and PTX. After rapid release of siRNA, PTX could be released within 72 h. The siBcl-xL and siMcl-1 inhibited cell migration decreased the mitochondrial membrane potential, and induced the release of reactive oxygen species while synergistically functioning with the antineoplastic effects of PTX. Our strategy reduced IC50 values by 2-5-fold in different cell lines, and the results of flow cytometry confirmed increased apoptosis rates and effectively inhibited cell migration. Synergistic therapy effectively reversed chemoresistance in PTX-resistant breast cancer cells. Similarly, the synergistic administration strategy showed significant sensitizing effects in vivo. Our study demonstrates the combined application of multiple synergistic antitumor administration strategies.


Asunto(s)
Antineoplásicos , Nanopartículas , Paclitaxel/farmacología , ARN Interferente Pequeño/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Antineoplásicos/farmacología
12.
Microbiol Res ; 281: 127607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228019

RESUMEN

The potential to produce and release outer membrane vesicles (OMVs) is evolutionarily conserved among bacteria, facilitating interactions between microbes. OMV release and its ecological significance have rarely been reported in coral holobionts. Here, via transmission electron microscopy (TEM), we discovered that the coral-associated strain Vibrio coralliilyticus DSM 19607 produced OMVs in culture. OMVs purified from V. coralliilyticus DSM 19607 inhibited the bacteriophage (phage) SBM1 infection of the V. coralliilyticus host, which was impaired by elevated temperature. Observation via TEM showed that sequestrating phages was a potential approach for V. coralliilyticus OMVs protection against phage infection. Furthermore, detection in coral mucus showed that interactions between membrane vesicles and phages potentially occurred in the natural environment. These results imply that OMVs regulate the coral microbiome and may have important implications for our mechanistic understanding of coral health and disease in the face of climate change.


Asunto(s)
Antozoos , Bacteriófagos , Vibrio , Animales , Antozoos/microbiología
13.
J Colloid Interface Sci ; 672: 200-208, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838628

RESUMEN

As different monosaccharides exhibit different redox characteristics, this paper presented a novel colorimetric sensor array based on the glucose oxidase-like (GOx-like) activity of Au nanoparticles (NPs) for monosaccharides identification. AuNPs can use O2, ABTS+•, or [Ag(NH3)2]+ as an electron acceptor to catalyze the oxidation of monosaccharides in different velocity, resulting in cross-responsive signals. The current sensor array can distinguish between different monosaccharides or their mixtures through linear discriminant analysis (LDA) and hierarchical clustering analysis (HCA). Moreover, the glucose and fructose concentrations can be estimated simultaneously using a neural network regression model based on the sensor array. This method shows potential for monosaccharide detection in industrial, medical, and biological applications.


Asunto(s)
Colorimetría , Oro , Aprendizaje Automático , Nanopartículas del Metal , Monosacáridos , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Monosacáridos/análisis , Monosacáridos/química , Tamaño de la Partícula , Oxidación-Reducción , Propiedades de Superficie
14.
Int J Nanomedicine ; 18: 5343-5363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746048

RESUMEN

Objective: This study aimed to deliver a polypeptide from the Bax-BH3 domain (BHP) through the synthesis of self-assembled amphiphile nanovectors (NVs) and to assess their potential for cancer therapeutic applications and biological safety in vitro and in vivo. These findings provide valuable options for cancer intervention and a novel approach for the rational design of therapeutics. Methods: We studied the antitumor activity of BHP by preparing RGDfK-PHPMA-b-Poly (MMA-alt-(Rhob-MA)) (RPPMMRA) and encapsulating it in BHP-NV. We also performed a series of characterizations and property analyses of RPPMMRA, including its size, stability, and drug-carrying capacity. The biocompatibility of RPPMMRA was evaluated in terms of cytotoxicity and hemolytic effects. The pro-apoptotic capacity of BHP was evaluated in vitro using mitochondrial membrane potential, flow cytometry, and apoptosis visualization techniques. The potential therapeutic effects of BHP on tumors were explored using reverse molecular docking. We also investigated the in vivo proapoptotic effect of BHP-NV in a nude mouse tumor model. Results: NVs were successfully prepared with hydrated particle sizes ranging from 189.6 nm to 256.6 nm, spherical overall, and were able to remain stable in different media for 72 h with drug loading up to 15.2%. The NVs were be successfully internalized within 6 h with good biocompatibility. Neither BHP nor NV showed significant toxicity when administered alone, however, BHP-NV demonstrated significant side effects in vitro and in vivo. The apoptosis rate increased significantly from 14.13% to 66.34%. Experiments in vivo showed that BHP-NV exhibited significant apoptotic and tumor-suppressive effects. Conclusion: A targeted fluorescent NV with high drug delivery efficiency and sustained release protected the active center of BHP, constituting BHP-NV for targeted delivery. RPPMMRA demonstrated excellent biocompatibility, stability, and drug loading ability, whereas and BHP-NV demonstrated potent antitumor effects in vivo and in vitro.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Animales , Ratones , Simulación del Acoplamiento Molecular , Apoptosis , Colorantes , Ratones Desnudos
15.
Mar Environ Res ; 188: 105978, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37087846

RESUMEN

The spread of antibiotic resistance genes (ARGs) is a growing concern over the world's various environments. Coastal environments may receive pollutants from land runoffs via estuaries. However, the impact of ARG contamination from estuarine regions to coastal areas is rarely reported. This study used high-throughput quantitative PCR to examine the diversity and abundance of ARGs in Pearl River Estuary (PRE) and adjacent coastal areas. We found that the distribution of ARGs in seawater exhibited the distance-decay phenomenon from the estuary to coastal areas, while the sediment samples did not exhibit an obvious distribution pattern. The estuarine water was found to be the hotspot of ARGs, with 74 ARG species detected and absolute abundance being 5.93 × 105 copies per mL, on average, while less species and lower abundance of ARGs were detected in coastal waters. Ordination analysis showed that estuarine ARG communities were significantly different from coastal ARG communities for water samples. SourceTracker analysis revealed that ARGs from the estuarine environment contributed only a minor fraction of ARG contamination to downstream coastal areas (1.5%-7.4% for water samples, and 0.7-1.8% for sediment samples), indicating the strong dilution effect of seawater. Mantel tests, redundancy analysis and random forest model analysis identified salinity, nutrients, microbial community structure and mobile genetic elements (MGEs) as important factors influencing ARG distribution. Partial least squares-path model revealed that, among all environmental factors, MGEs directly affected the distribution of ARGs, while other factors indirectly contributed by affecting the MGEs assemblage. Our study provides insight into the dissemination of ARGs from the PRE to adjacent coastal areas.


Asunto(s)
Antibacterianos , Estuarios , Antibacterianos/farmacología , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Agua , China
16.
Environ Microbiol ; 14(2): 540-58, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22188618

RESUMEN

Investigating the interactions between marine cyanobacteria and their viruses (phages) is important towards understanding the dynamic of ocean's primary productivity. Genome sequencing of marine cyanophages has greatly advanced our understanding about their ecology and evolution. Among 24 reported genomes of cyanophages that infect marine picocyanobacteria, 17 are from cyanomyoviruses and six from cyanopodoviruses, and only one from cyanosiphovirus (Prochlorococcus phage P-SS2). Here we present four complete genome sequences of siphoviruses (S-CBS1, S-CBS2, S-CBS3 and S-CBS4) that infect four different marine Synechococcus strains. Three distinct subtypes were recognized among the five known marine siphoviruses (including P-SS2) in terms of morphology, genome architecture, gene content and sequence similarity. Our study revealed that cyanosiphoviruses are genetically diverse with polyphyletic origin. No core genes were found across these five cyanosiphovirus genomes, and this is in contrast to the fact that many core genes have been found in cyanomyovirus or cyanopodovirus genomes. Interestingly, genes encoding three structural proteins and a lysozyme of S-CBS1 and S-CBS3 showed homology to a prophage-like genetic element in two freshwater Synechococcus elongatus genomes. Re-annotation of the prophage-like genomic region suggests that S. elongatus may contain an intact prophage. Cyanosiphovirus genes involved in DNA metabolism and replication share high sequence homology with those in cyanobacteria, and further phylogenetic analysis based on these genes suggests that ancient and selective genetic exchanges occurred, possibly due to past prophage integration. Metagenomic analysis based on the Global Ocean Sampling database showed that cyanosiphoviruses are present in relatively low abundance in the ocean surface water compared to cyanomyoviruses and cyanopodoviruses.


Asunto(s)
Bacteriófagos/genética , Transferencia de Gen Horizontal , Agua de Mar/virología , Siphoviridae/clasificación , Synechococcus/virología , Bacteriófagos/clasificación , Secuencia de Bases , Evolución Biológica , Cianobacterias/virología , Variación Genética , Genoma Viral , Metagenoma , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , Prochlorococcus/virología , Agua de Mar/microbiología , Siphoviridae/genética , Siphoviridae/fisiología , Synechococcus/fisiología
17.
mSphere ; 7(6): e0049922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472446

RESUMEN

Picocyanobacteria are the most abundant primary producers in the ocean and play a fundamental role in marine carbon cycling. Quantification of picocyanobacteria on sinking particles and in sediments is essential to understanding their contribution to the biological carbon pump. We designed a primer set targeting the 16S-23S rRNA internal transcribed spacer (ITS) sequence of cyanobacteria and established a quantitative PCR (qPCR) method for quantifying the ITS sequence abundance. High-throughput sequencing confirmed that this primer set can cover broad diversities of marine picocyanobacteria and avoid amplification of other marine cyanobacteria such as Trichodesmium and Crocosphaera. Amplification efficiencies were slightly different when seven marine Synechococcus and Prochlorococcus strains were assayed. The qPCR results were comparable with flow cytometry for water samples. Using this method, we found that, in the dark ocean, picocyanobacterial ITS sequence abundances were 10 to 100 copies/mL in the size fraction of 0.2 to 3 µm, which were 1 to 3 orders of magnitude more abundant than on the >3-µm particles. We also found that picocyanobacterial ITS abundance in sediment ranged from 105 to 107 copies/g along two nearshore-to-offshore transects in the northern South China Sea. These results further explain the important role of picocyanobacteria in carbon export. Collectively, we provide a qPCR method quantifying the total abundance of marine picocyanobacteria on water column particles and in sediments. Moreover, this newly designed primer set can be also applied to investigate the community of picocyanobacteria via high-throughput sequencing. IMPORTANCE Picocyanobacteria are the most abundant primary producers in the ocean. However, quantification of picocyanobacteria on the sinking particles and in sediments remains challenging using flow cytometry or epifluorescence microscopy. Here, we developed a real-time PCR method to quantify picocyanobacteria using a newly designed primer set specifically targeting the 16S-23S rRNA ITS sequence of cyanobacteria. We showed that in the dark ocean, picocyanobacteria are 1 to 3 orders of magnitude more abundant in small particles (0.2 to 3 µm) than in larger particles (>3 µm). This result supports the important role of direct sinking free-living picocyanobacteria cells in the carbon export to deep ocean. We also found that the picocyanobacterial ITS sequence abundance were 105 to 107 copies per gram in sediments, suggesting significant accumulation of sinking picocyanobacteria in the benthic ecosystem. This qPCR method can be used to quantify the contribution of picocyanobacteria to the biological carbon pump.


Asunto(s)
Agua de Mar , Synechococcus , Agua de Mar/microbiología , Ecosistema , Agua , Reacción en Cadena en Tiempo Real de la Polimerasa , Carbono , ARN Ribosómico 23S/genética , Filogenia , Synechococcus/genética
18.
Front Microbiol ; 13: 1038136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312958

RESUMEN

Prochlorococcus is an obligate marine microorganism and the dominant autotroph in tropical and subtropical open ocean. However, the salinity range for growing and response to low salinity exposure of Prochlorococcus are still unknown. In this study, we found that low-light adapted Prochlorococcus stain NATL1A and high-light adapted strain MED4 could be acclimated in the lowest salinity of 25 and 28 psu, respectively. Analysis of the effective quantum yield of PSII photochemistry (Fv/Fm) indicated that both strains were stressed when growing in salinity lower than 34 psu. We then compared the global transcriptome of low salinity (28 psu) acclimated cells and cells growing in normal seawater salinity (34 psu). The transcriptomic responses of NATL1A and MED4 were approximately different, with more differentially expressed genes in NATL1A (525 genes) than in MED4 (277 genes). To cope with low salinity, NATL1A down-regulated the transcript of genes involved in translation, ribosomal structure and biogenesis and ATP-production, and up-regulated photosynthesis-related genes, while MED4 regulated these genes in an opposite way. In addition, both strains up-regulated an iron ABC transporter gene, idiA, suggesting low salinity acclimated cells could be iron limited. This study demonstrated the growing salinity range of Prochlorococcus cells and their global gene expression changes due to low salinity stress.

19.
Virol J ; 8: 124, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21414219

RESUMEN

Roseophage RDJLΦ1 is a siphovirus isolated from South China Sea on Roseobacter denitrificans OCh114. Its virion encapsulates 62.7 kb genome that encodes 87 gene products. RDJLΦ1 shares similar genome organization and gene content with the marine bacteriophage ΦJL001 and Pseudomonas phages YuA and M6, which are different from those of typical λ- or Mu-like phages. Four hallmark genes (ORFs 81 to 84) of RDJLΦ1 were highly homologous to RcGTA-like genes 12 to 15. The largest gene (ORF 84) was predicted to encode a tail fibre protein that could be involved in host recognition. Extended phylogenetic and comparative genomic analyses based on 77 RcGTA-like element-containing bacterial genomes revealed that RcGTA-like genes 12 to 15 together appear to be a conserved modular element that could also be found in some phage or prophage genomes. Our study suggests that RcGTA-like genes-containing phages and prophages and complete RcGTAs possibly descended from a same prophage ancestor that had diverged and then evolved vertically. The complete genome of RDJLΦ1 provides evidence into the hypothesis that extant RcGTA may be a prophage remnant.


Asunto(s)
Alphaproteobacteria/genética , Alphaproteobacteria/virología , Bacteriófagos/genética , Evolución Biológica , Transferencia de Gen Horizontal , Genoma Viral , Agua de Mar/virología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Profagos/clasificación , Profagos/genética , Profagos/aislamiento & purificación
20.
Microbiologyopen ; 10(1): e1150, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33377630

RESUMEN

Marine picocyanobacteria belonging to genera Synechococcus and Prochlorococcus are genetically diverged and distributed into distinct biogeographical patterns, and both are infected by genetically closely related cyanopodoviruses. Previous studies have not fully explored whether the two virus-host systems share similar gene expression patterns during infection. Whole-genome expression dynamics of T7-like cyanopodovirus P-SSP7 and its host Prochlorococcus strain MED4 have already been reported. Here, we conducted genomic and transcriptomic analyses on T7-like cyanopodovirus S-SBP1 during its infection on Synechococcus strain WH7803. S-SBP1 has a latent period of 8 h and phage DNA production of 30 copies per cell. In terms of whole-genome phylogenetic relationships and average nucleotide identity, S-SBP1 was most similar to cyanopodovirus S-RIP2, which also infects Synechococcus WH7803. Three hypervariable genomic islands were identified when comparing the genomes of S-SBP1 and S-RIP2. Single nucleotide variants were also observed in three S-SBP1 genes, which were located within the island regions. Based on RNA-seq analysis, S-SBP1 genes clustered into three temporal expression classes, whose gene content was similar to that of P-SSP7. Thirty-two host genes were upregulated during phage infection, including those involved in carbon metabolism, ribosome components, and stress response. These upregulated genes were similar to those upregulated by Prochlorococcus MED4 in response to infection by P-SSP7. Our study demonstrates a programmed temporal expression pattern of cyanopodoviruses and hosts during infection.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Myoviridae/genética , Synechococcus/genética , Synechococcus/virología , Transcriptoma/genética , Expresión Génica/genética , Perfilación de la Expresión Génica , Genoma Viral/genética , Islas Genómicas/genética , Filogenia , Prochlorococcus/genética , Prochlorococcus/virología , Agua de Mar/microbiología , Synechococcus/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA