Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 1026-1038.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868208

RESUMEN

Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of ß2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.


Asunto(s)
Síndrome de Down , Receptores de N-Metil-D-Aspartato , Microglobulina beta-2 , Animales , Humanos , Ratones , Microglobulina beta-2/metabolismo , Microglobulina beta-2/farmacología , Disfunción Cognitiva/metabolismo , Reacciones Cruzadas , Parabiosis , Proteómica , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Síndrome de Down/sangre , Síndrome de Down/metabolismo
2.
Nature ; 622(7983): 627-636, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821702

RESUMEN

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Asunto(s)
Apoptosis , Senescencia Celular , Citosol , ADN Mitocondrial , Mitocondrias , Animales , Ratones , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Prueba de Estudio Conceptual , Inflamación/metabolismo , Fenotipo , Longevidad , Envejecimiento Saludable
4.
J Child Lang ; : 1-24, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37644915

RESUMEN

Indirect answers are a common type of non-literal language that do not provide an explicit "yes" or "no" to a question (e.g., "I have to work late" indirectly answered "Are you going to the party?" with a negative response). In the current study, we examined the developmental trajectory of comprehension of indirect answers among 5- to 10-year-old children with typical development. Forty-eight children, 23 boys and 25 girls, between the ages of 5 years; 0 months and 10 years; 11 months (M = 8;2, SD = 19.77 months) completed an experimental task to judge whether a verbally presented indirect answer meant yes or no (Comprehension Task) and then explain their choice (Explanation Task). Responses were scored for accuracy and coded for error analysis. On the Comprehension Task, the 5- to 8-year-olds performed with approximately 85% accuracy, while the 9- and 10-year-olds achieved 95% accuracy. On the Explanation Task, the cross-sectional trajectory revealed three stages: the 5- and 6-year-olds adequately explained indirect answers 32% of the time, the 7- and 8-year-olds performed significantly higher at 55%, and the 9- and 10-year-olds made significant gains than the younger children at 66%. Error analysis revealed that when children fail to interpret speaker intentions appropriately, they repeat the speaker's utterance or provide an insufficient explanation 80% of the time. Other responses, such as those irrelevant to the context, indicating "I don't know" or no response, or that were made-up interpretations each accounted for 2%-10% of total inadequate explanations. Study findings indicate discrepancies between task performances and offer two separate sets of baseline data for future comparisons that investigate comprehension or explanation of indirect answers by children with different cultural and linguistic backgrounds and by those with varying cognitive and language profiles.

5.
PLoS Biol ; 17(12): e3000525, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841517

RESUMEN

Ubiquitin-specific protease (USP) 6 is a hominoid deubiquitinating enzyme previously implicated in intellectual disability and autism spectrum disorder. Although these findings link USP6 to higher brain function, potential roles for USP6 in cognition have not been investigated. Here, we report that USP6 is highly expressed in induced human neurons and that neuron-specific expression of USP6 enhances learning and memory in a transgenic mouse model. Similarly, USP6 expression regulates N-methyl-D-aspartate-type glutamate receptor (NMDAR)-dependent long-term potentiation and long-term depression in USP6 transgenic mouse hippocampi. Proteomic characterization of transgenic USP6 mouse cortex reveals attenuated NMDAR ubiquitination, with concomitant elevation in NMDAR expression, stability, and cell surface distribution with USP6 overexpression. USP6 positively modulates GluN1 expression in transfected cells, and USP6 down-regulation impedes focal GluN1 distribution at postsynaptic densities and impairs synaptic function in neurons derived from human embryonic stem cells. Together, these results indicate that USP6 enhances NMDAR stability to promote synaptic function and cognition.


Asunto(s)
Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Encéfalo/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Ubiquitina Tiolesterasa/genética
6.
J Neurosci ; 40(31): 5908-5921, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601248

RESUMEN

SORLA is a transmembrane trafficking protein associated with Alzheimer's disease risk. Although SORLA is abundantly expressed in neurons, physiological roles for SORLA remain unclear. Here, we show that cultured transgenic neurons overexpressing SORLA feature longer neurites, and accelerated neurite regeneration with wounding. Enhanced release of a soluble form of SORLA (sSORLA) is observed in transgenic mouse neurons overexpressing human SORLA, while purified sSORLA promotes neurite extension and regeneration. Phosphoproteomic analyses demonstrate enrichment of phosphoproteins related to the epidermal growth factor (EGFR)/ERK pathway in SORLA transgenic mouse hippocampus from both genders. sSORLA coprecipitates with EGFR in vitro, and sSORLA treatment increases EGFR Y1173 phosphorylation, which is involved in ERK activation in cultured neurons. Furthermore, sSORLA triggers ERK activation, whereas pharmacological EGFR or ERK inhibition reverses sSORLA-dependent enhancement of neurite outgrowth. In search for downstream ERK effectors activated by sSORLA, we identified upregulation of Fos expression in hippocampus from male mice overexpressing SORLA by RNAseq analysis. We also found that Fos is upregulated and translocates to the nucleus in an ERK-dependent manner in neurons treated with sSORLA. Together, these results demonstrate that sSORLA is an EGFR-interacting protein that activates EGFR/ERK/Fos signaling to enhance neurite outgrowth and regeneration.SIGNIFICANCE STATEMENT SORLA is a transmembrane trafficking protein previously known to reduce the levels of amyloid-ß, which is critical in the pathogenesis of Alzheimer's disease. In addition, SORLA mutations are a risk factor for Alzheimer's disease. Interestingly, the SORLA ectodomain is cleaved into a soluble form, sSORLA, which has been shown to regulate cytoskeletal signaling pathways and cell motility in cells outside the nervous system. We show here that sSORLA binds and activates the EGF receptor to induce downstream signaling through the ERK serine/threonine kinase and the Fos transcription factor, thereby enhancing neurite outgrowth. These findings reveal a novel role for sSORLA in promoting neurite regeneration through the EGF receptor/ERK/Fos pathway, thereby demonstrating a potential neuroprotective mechanism involving SORLA.


Asunto(s)
Receptores ErbB/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de Transporte de Membrana/fisiología , Regeneración Nerviosa/fisiología , Neuritas/fisiología , Receptores de LDL/fisiología , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Genes fos , Hipocampo/fisiología , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Fosforilación , Receptores de LDL/genética
7.
Nature ; 496(7444): 210-4, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23579680

RESUMEN

Fossil dinosaur embryos are surprisingly rare, being almost entirely restricted to Upper Cretaceous strata that record the late stages of non-avian dinosaur evolution. Notable exceptions are the oldest known embryos from the Early Jurassic South African sauropodomorph Massospondylus and Late Jurassic embryos of a theropod from Portugal. The fact that dinosaur embryos are rare and typically enclosed in eggshells limits their availability for tissue and cellular level investigations of development. Consequently, little is known about growth patterns in dinosaur embryos, even though post-hatching ontogeny has been studied in several taxa. Here we report the discovery of an embryonic dinosaur bone bed from the Lower Jurassic of China, the oldest such occurrence in the fossil record. The embryos are similar in geological age to those of Massospondylus and are also assignable to a sauropodomorph dinosaur, probably Lufengosaurus. The preservation of numerous disarticulated skeletal elements and eggshells in this monotaxic bone bed, representing different stages of incubation and therefore derived from different nests, provides opportunities for new investigations of dinosaur embryology in a clade noted for gigantism. For example, comparisons among embryonic femora of different sizes and developmental stages reveal a consistently rapid rate of growth throughout development, possibly indicating that short incubation times were characteristic of sauropodomorphs. In addition, asymmetric radial growth of the femoral shaft and rapid expansion of the fourth trochanter suggest that embryonic muscle activation played an important role in the pre-hatching ontogeny of these dinosaurs. This discovery also provides the oldest evidence of in situ preservation of complex organic remains in a terrestrial vertebrate.


Asunto(s)
Dinosaurios/anatomía & histología , Dinosaurios/embriología , Fósiles , Animales , China , Fémur/anatomía & histología , Fémur/embriología , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones
8.
J Neurosci ; 36(30): 7996-8011, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27466343

RESUMEN

UNLABELLED: Proteolytic generation of amyloidogenic amyloid ß (Aß) fragments from the amyloid precursor protein (APP) significantly contributes to Alzheimer's disease (AD). Although amyloidogenic APP proteolysis can be affected by trafficking through genetically associated AD components such as SORLA, how SORLA functionally interacts with other trafficking components is yet unclear. Here, we report that SNX27, an endosomal trafficking/recycling factor and a negative regulator of the γ-secretase complex, binds to the SORLA cytosolic tail to form a ternary complex with APP. SNX27 enhances cell surface SORLA and APP levels in human cell lines and mouse primary neurons, and depletion of SNX27 or SORLA reduces APP endosome-to-cell surface recycling kinetics. SNX27 overexpression enhances the generation of cell surface APP cleavage products such as soluble alpha-APP C-terminal fragment (CTFα) in a SORLA-dependent manner. SORLA-mediated Aß reduction is attenuated by downregulation of SNX27. This indicates that an SNX27/SORLA complex functionally interacts to limit APP distribution to amyloidogenic compartments, forming a non-amyloidogenic shunt to promote APP recycling to the cell surface. SIGNIFICANCE STATEMENT: Many genes have been identified as risk factors for Alzheimer's disease (AD), and a large proportion of these genes function to limit production or toxicity of the AD-associated amyloid ß (Aß) peptide. Whether and how these genes precisely operate to limit AD onset remains an important question. We identify binding and trafficking interactions between two of these factors, SORLA and SNX27, and demonstrate that SNX27 can direct trafficking of SORLA and the Aß precursor APP to the cell surface to limit the production of Aß. Diversion APP to the cell surface through modulation of this molecular complex may represent a complimentary strategy for future development in AD treatment.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Amiloide/biosíntesis , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Receptores de LDL/metabolismo , Nexinas de Clasificación/metabolismo , Fracciones Subcelulares/metabolismo , Proteínas Amiloidogénicas/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Neuronas/citología , Unión Proteica , Transporte de Proteínas
9.
J Neurosci ; 36(50): 12586-12597, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974614

RESUMEN

Hydrocephalus is a brain disorder derived from CSF accumulation due to defects in CSF clearance. Although dysfunctional apical cilia in the ependymal cell layer are causal to the onset of hydrocephalus, mechanisms underlying proper ependymal cell differentiation are largely unclear. SNX27 is a trafficking component required for normal brain function and was shown previously to suppress γ-secretase-dependent amyloid precursor protein and Notch cleavage. However, it was unclear how SNX27-dependent γ-secretase inhibition could contribute to brain development and pathophysiology. Here, we describe and characterize an Snx27-deleted mouse model for the ependymal layer defects of deciliation and hydrocephalus. SNX27 deficiency results in reductions in ependymal cells and cilia density, as well as severe postnatal hydrocephalus. Inhibition of Notch intracellular domain signaling with γ-secretase inhibitors reversed ependymal cells/cilia loss and dilation of lateral ventricles in Snx27-deficient mice, giving strong indication that Snx27 deletion triggers defects in ependymal layer formation and ciliogenesis through Notch hyperactivation. Together, these results suggest that SNX27 is essential for ependymal cell differentiation and ciliogenesis, and its deletion can promote hydrocephalus pathogenesis. SIGNIFICANCE STATEMENT: Down's syndrome (DS) in humans and mouse models has been shown previously to confer a high risk for the development of pathological hydrocephalus. Because we have previously described SNX27 as a component that is consistently downregulated in DS, we present here a robust Snx27-deleted mouse model that produces hydrocephalus and associated ciliary defects with complete penetrance. In addition, we find that γ-secretase/Notch modulation may be a candidate drug target in SNX27-associated hydrocephalus such as that observed in DS. Based on these findings, we anticipate that future study will determine whether modulation of a SNX27/Notch/γ-secretase pathway can also be of therapeutic interest to congenital hydrocephalus.


Asunto(s)
Diferenciación Celular/fisiología , Cilios/fisiología , Epéndimo/patología , Hidrocefalia/genética , Hidrocefalia/patología , Nexinas de Clasificación/fisiología , Uniones Adherentes/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Cilios/patología , Epéndimo/citología , Fibroblastos/efectos de los fármacos , Glutatión/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Receptores Notch/metabolismo , Nexinas de Clasificación/genética
11.
Opt Lett ; 40(7): 1354-7, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831331

RESUMEN

Fossil teeth are primary tools in the study of vertebrate evolution, but standard imaging modalities have not been capable of providing high-quality images in dentin, the main component of teeth, owing to small refractive index differences in the fossilized dentin. Our first attempt to use third-harmonic generation (THG) microscopy in fossil teeth has yielded significant submicrometer level anatomy, with an unexpectedly strong signal contrasting fossilized tubules from the surrounding dentin. Comparison between fossilized and extant teeth of crocodilians reveals a consistent evolutionary signature through time, indicating the great significance of THG microscopy in the evolutionary studies of dental anatomy in fossil teeth.


Asunto(s)
Fósiles , Microscopía , Diente/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Animales
13.
Mol Neurobiol ; 61(3): 1346-1362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37704928

RESUMEN

Sorting nexin17 (SNX17) is a member of the sorting nexin family, which plays a crucial role in endosomal trafficking. Previous research has shown that SNX17 is involved in the recycling or degradation of various proteins associated with neurodevelopmental and neurological diseases in cell models. However, the significance of SNX17 in neurological function in the mouse brain has not been thoroughly investigated. In this study, we generated Snx17 knockout mice and observed that the homozygous deletion of Snx17 (Snx17-/-) resulted in lethality. On the other hand, heterozygous mutant mice (Snx17+/-) exhibited anxiety-like behavior with a reduced preference for social novelty. Furthermore, Snx17 haploinsufficiency led to impaired synaptic transmission and reduced maturation of dendritic spines. Through GST pulldown and interactome analysis, we identified the SRC kinase inhibitor, p140Cap, as a potential downstream target of SNX17. We also demonstrated that the interaction between p140Cap and SNX17 is crucial for dendritic spine maturation. Together, this study provides the first in vivo evidence highlighting the important role of SNX17 in maintaining neuronal function, as well as regulating social novelty and anxiety-like behaviors.


Asunto(s)
Espinas Dendríticas , Nexinas de Clasificación , Animales , Ratones , Espinas Dendríticas/metabolismo , Homocigoto , Transporte de Proteínas , Eliminación de Secuencia , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
14.
Sci Rep ; 14(1): 20309, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218914

RESUMEN

Previous studies arguing for parental care in dinosaurs have been primarily based on fossil accumulations of adults and hatchlings, perinatal and post-hatchlings in nests and nest areas, and evidence of brooding, the majority of which date to the Late Cretaceous. Similarly, the general body proportions of preserved embryonic skeletons of the much older Early Jurassic Massospondylus have been used to suggest that hatchlings were unable to forage for themselves. Here, we approach the question of parental care in dinosaurs by using a combined morphological, chemical, and biomechanical approach to compare early embryonic and hatchling bones of the Early Jurassic sauropodomorph Lufengosaurus with those of extant avian taxa with known levels of parental care. We compare femora, the main weight-bearing limb bone, at various embryonic and post-embryonic stages in a precocious and an altricial extant avian dinosaur with those of embryonic and hatchling Lufengosaurus, and find that the rate and degree of bone development in Lufengosaurus is closer to that of the highly altricial Columba (pigeon) than the precocious Gallus (chicken), providing strong support for the hypothesis that Lufengosaurus was fully altricial. We suggest that the limb bones of Lufengosaurus hatchlings were not strong enough to forage for themselves and would likely need parental feeding.


Asunto(s)
Aves , Dinosaurios , Fósiles , Animales , Dinosaurios/anatomía & histología , Conducta Alimentaria , Fémur/anatomía & histología , Desarrollo Óseo
15.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229036

RESUMEN

Of the more than 100 types of brain cancer, glioblastoma (GBM) is the deadliest. As GBM stem cells (GSCs) are considered to be responsible for therapeutic resistance and tumor recurrence, effective targeting and elimination of GSCs could hold promise for preventing GBM recurrence and achieving potential cures. We show here that SUV39H1 , which encodes a histone-3, lysine-9 methyltransferase, plays a critical role in GSC maintenance and GBM progression. Upregulation of SUV39H1 was observed in GBM samples compared to normal brain tissues, and knockdown of SUV39H1 in patient-derived GSCs impaired their proliferation and stemness. Single-cell RNA-seq analysis demonstrated restricted expression of SUV39H1 is in GSCs relative to non-stem GBM cells, likely due to super-enhancer-mediated transcriptional activation, while whole cell RNA-seq analysis revealed that SUV39H1 regulates G2/M cell cycle progression, stem cell maintenance, and cell death pathways in GSCs. By integrating the RNA-seq data with ATAC-seq (assay for transposase-accessible chromatin followed by sequencing), we further demonstrated altered chromatin accessibility in key genes associated with these pathways following SUV39H1 knockdown. Treatment with chaetocin, a SUV39H1 inhibitor, mimicked the functional effects of SUV39H1 knockdown in GSCs and sensitized GSCs to the GBM chemotherapy drug temozolomide. Furthermore, targeting SUV39H1 in vivo using a patient-derived xenograft model for GBM inhibited GSC-driven tumor formation. This is the first report demonstrating a critical role for SUV39H1 in GSC maintenance. SUV39H1-mediated targeting of GSCs could enhance the efficacy of existing chemotherapy, presenting a promising strategy for improving GBM treatment and patient outcomes. Highlights: SUV39H1 is upregulated in GBM, especially GSCsTargeting SUV39H1 disrupts GSC maintenance and sensitizes GSCs to TMZTargeting SUV39H1 alters chromatin accessibility at cell cycle and stemness genesTargeting SUV39H1 suppresses GSC-driven tumors in a patient-derived xenograft model.

16.
Nat Commun ; 15(1): 8508, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353943

RESUMEN

Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance.


Asunto(s)
Presentación de Antígeno , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico , Antígenos de Histocompatibilidad Clase I , Proteínas de Transporte de Membrana , Ubiquitina-Proteína Ligasas , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
17.
Prev Med Rep ; 38: 102590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38283967

RESUMEN

Objective: Cervical cancer screening coverage remains low in many countries worldwide. Self-sampling approach for cervical cancer screening has a good potential to improve the screening coverage. This study aims to compare different types of HPV self-sampling devices for cervical cancer screening to identify the most accurate and acceptable device(s). Methods: A systematic review was performed on data extracted from all studies specific to HPV self-sampling devices by searching relevant articles in PubMed, Google Scholar, Scopus, Web of Science, ScienceDirect, Cochrane Library, and EBSCO published from 2013 to October 2023. The study was registered in PROSPERO (CRD42022375682). Results: Overall, 70 papers met the eligibility criteria for this systematic review and were included in the analysis: 22 studies reported self-sampling devices diagnostic accuracy, 32 studies reported self-sampling devices acceptability and 16 studies reported both (accuracy and acceptability). The most popular self-sampling devices were Evalyn Brush, FLOQ Swab, Cervex-Brush, and Delphi Screener. Out of overall 38 studies analyzing self-sampling devices' diagnostic accuracy, 94.7% of studies reported that self-collected specimens provided sensitivity and specificity comparable with clinician-collected samples; acceptability of Evalyn Brush, FLOQ Swab, Delphi Screener, and Colli-Pee, varied between 84.2% and 100%. Conclusion: The self-sampling approach has a good potential to increase cervical cancer screening coverage. Evalyn Brush, Cervex-Brush, FLOQ Swab, and Delphi Screener self-sampling devices for HPV detection were the most commonly utilized and found to be the most accurate, and patient-acceptable. HPV detection accuracy using these self-sampling devices had no significant difference compared to the sampling performed by healthcare providers.

18.
JBI Evid Synth ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188132

RESUMEN

OBJECTIVE: The objective of this review is to determine the diagnostic accuracy of the currently available and upcoming point-of-care rapid antigen tests (RATs) used in primary care settings relative to the viral genetic real-time reverse transcriptase polymerase chain reaction (RT-PCR) test as a reference for diagnosing COVID-19/SARS-CoV-2 in adults. INTRODUCTION: Accurate COVID-19 point-of-care diagnostic tests are required for real-time identification of SARS-CoV-2 infection in individuals. Real-time RT-PCR is the accepted gold standard for diagnostic testing, requiring technical expertise and expensive equipment that are unavailable in most primary care locations. RATs are immunoassays that detect the presence of a specific viral protein, which implies a current infection with SARS-CoV-2. RATs are qualitative or semi-quantitative diagnostics that lack thresholds that provide a result within a short time frame, typically within the hour following sample collection. In this systematic review, we synthesized the current evidence regarding the accuracy of RATs for detecting SARS-CoV-2 compared with RT-PCR. INCLUSION CRITERIA: Studies that included nonpregnant adults (18 years or older) with suspected SARS-CoV-2 infection, regardless of symptomology or disease severity, were included. The index test was any available SARS-CoV-2 point-of-care RAT. The reference test was any commercially distributed RT-PCR-based test that detects the RNA genome of SARS-CoV-2 and has been validated by an independent third party. Custom or in-house RT-PCR tests were also considered, with appropriate validation documentation. The diagnosis of interest was COVID-19 disease and SARS-CoV-2 infection. This review considered cross-sectional and cohort studies that examined the diagnostic accuracy of COVID-19/SARS-CoV-2 infection where the participants had both index and reference tests performed. METHODS: The keywords and index terms contained in relevant articles were used to develop a full search strategy for PubMed and adapted for Embase, Scopus, Qinsight, and the WHO COVID-19 databases . Studies published from November 2019 to July 12, 2022, were included, as SARS-CoV-2 emerged in late 2019 and is the cause of a continuing pandemic. Studies that met the inclusion criteria were critically appraised using QUADAS-2. Using a customized tool, data were extracted from included studies and were verified prior to analysis. The pooled sensitivity, specificity, positive predictive, and negative predictive values were calculated and presented with 95% CIs. When heterogeneity was observed, outlier analysis was conducted, and the results were generated by removing outliers. RESULTS: Meta-analysis was performed on 91 studies of 581 full-text articles retrieved that provided true-positive, true-negative, false-positive, and false-negative values. RATs can identify individuals who have COVID-19 with high reliability (positive predictive value 97.7%; negative predictive value 95.2%) when considering overall performance. However, the lower level of sensitivity (67.1%) suggests that negative test results likely need to be retested through an additional method. CONCLUSIONS: Most reported RAT brands had only a few studies comparing their performance with RT-PCR. Overall, a positive RAT result is an excellent predictor of a positive diagnosis of COVID-19. We recommend that Roche's SARS-CoV-2 Rapid Antigen Test and Abbott's BinaxNOW tests be used in primary care settings, with the understanding that negative results need to be confirmed through RT-PCR. We recommend adherence to the STARD guidelines when reporting on diagnostic data. REVIEW REGISTRATION: PROSPERO CRD42020224250.

19.
Neuron ; 112(10): 1676-1693.e12, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513667

RESUMEN

Neuronal loss is the central issue in Alzheimer's disease (AD), yet no treatment developed so far can halt AD-associated neurodegeneration. Here, we developed a monoclonal antibody (mAb2A7) against 217 site-phosphorylated human tau (p-tau217) and observed that p-tau217 levels positively correlated with brain atrophy and cognitive impairment in AD patients. Intranasal administration efficiently delivered mAb2A7 into male PS19 tauopathic mouse brain with target engagement and reduced tau pathology/aggregation with little effect on total soluble tau. Further, mAb2A7 treatment blocked apoptosis-associated neuronal loss and brain atrophy, reversed cognitive deficits, and improved motor function in male tauopathic mice. Proteomic analysis revealed that mAb2A7 treatment reversed alterations mainly in proteins associated with synaptic functions observed in murine tauopathy and AD brain. An antibody (13G4) targeting total tau also attenuated tau-associated pathology and neurodegeneration but impaired the motor function of male tauopathic mice. These results implicate p-tau217 as a potential therapeutic target for AD-associated neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales , Tauopatías , Proteínas tau , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Inmunoterapia/métodos , Ratones Transgénicos , Degeneración Nerviosa/patología , Degeneración Nerviosa/tratamiento farmacológico , Fosforilación , Proteínas tau/metabolismo , Tauopatías/tratamiento farmacológico
20.
Curr Opin Cell Biol ; 18(1): 26-31, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16337782

RESUMEN

Cofilin is a ubiquitous actin-binding factor required for the reorganization of actin filaments in eukaryotes. The dephosphorylation of cofilin enables its actin severing and depolymerizing activity and drives directional cell motility, thus providing a simple phosphoregulatory mechanism for actin reorganization. To date, two cofilin-specific phosphatases have been identified: Slingshot and Chronophin. These cofilin phosphatases are unrelated in sequence and regulatory properties, each potentially providing a unique mechanism for cofilin activation under varying biological circumstances.


Asunto(s)
Factores Despolimerizantes de la Actina/fisiología , Actinas/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Animales , Humanos , Hidrolasas/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosforilación , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA