Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 283: 116975, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39216222

RESUMEN

The contribution of plant hormones and energy-rich compounds and their metabolites (ECMs) in alleviating aluminum (Al) toxicity by elevated pH remains to be clarified. For the first time, a targeted metabolome was applied to identify Al-pH-interaction-responsive hormones and ECMs in Citrus sinensis leaves. More Al-toxicity-responsive hormones and ECMs were identified at pH 4.0 [4 (10) upregulated and 7 (17) downregulated hormones (ECMs)] than those at pH 3.0 [1 (9) upregulated and 4 (14) downregulated hormones (ECMs)], suggesting that the elevated pH improved the adaptation of hormones and ECMs to Al toxicity in leaves. The roles of hormones and ECMs in reducing leaf Al toxicity mediated by elevated pH might include the following aspects: (a) improved leaf growth by upregulating the levels of jasmonoyl-L-isoleucine (JA-ILE), 6-benzyladenosine (BAPR), N6-isopentenyladenosine (IPR), cis-zeatin-O-glucoside riboside (cZROG), and auxins (AUXs), preventing Al toxicity-induced reduction of gibberellin (GA) biosynthesis, and avoiding jasmonic acid (JA)-mediated defense; (b) enhanced biosynthesis and accumulation of tryptophan (TRP), as well as the resulting increase in biosynthesis of auxin, melatonin and secondary metabolites (SMs); (c) improved ability to maintain the homeostasis of ATP and other phosphorus (P)-containing ECMs; and (d) enhanced internal detoxification of Al due to increased organic acid (OA) and SM accumulation and elevated ability to detoxify reactive oxygen species (ROS) due to enhanced SM accumulation. To conclude, the current results corroborate the hypotheses that elevated pH reduces Al toxicity by upregulating the ability to maintain the homeostasis of ATP and other P-containing ECMs in leaves under Al toxicity and (b) hormones participate in the elevated pH-mediated alleviation of Al toxicity by positively regulating growth, the ability to detoxify ROS, and the internal detoxification of Al in leaves under Al toxicity. Our findings provide novel insights into the roles of hormones and ECMs in mitigating Al toxicity mediated by the elevated pH.


Asunto(s)
Aluminio , Citrus sinensis , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Hojas de la Planta/efectos de los fármacos , Aluminio/toxicidad , Citrus sinensis/efectos de los fármacos , Concentración de Iones de Hidrógeno
2.
New Phytol ; 233(3): 1257-1273, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775618

RESUMEN

The mechanisms underlying plant tolerance to boron (B) excess are far from fully understood. Here we characterized the role of the miR397-CsiLAC4/CsiLAC17 (from Citrus sinensis) module in regulation of B flow. Live-cell imaging techniques were used in localization studies. A tobacco transient expression system tested modulations of CsiLAC4 and CsiLAC17 by miR397. Transgenic Arabidopsis were generated to analyze the biological functions of CsiLAC4 and CsiLAC17. CsiLAC4's role in xylem lignification was determined by mRNA hybridization and cytochemistry. In situ B distribution was analyzed by laser ablation inductively coupled plasma mass spectrometry. CsiLAC4 and CsiLAC17 are predominantly localized in the apoplast of tobacco epidermal cells. Overexpression of CsiLAC4 in Arabidopsis improves the plants' tolerance to boric acid excess by triggering high-B-dependent lignification of the vascular system's cell wall and reducing free B content in roots and shoots. In Citrus, CsiLAC4 is expressed explicitly in the xylem parenchyma and is modulated by B-responsive miR397. Upregulation of CsiLAC4 in Citrus results in lignification of the xylem cell walls, restricting B flow from xylem vessels to the phloem. CsiLAC4 contributes to plant tolerance to boric acid excess via high-B-dependent lignification of cell walls, which set up a 'physical barrier' preventing B flow.


Asunto(s)
Arabidopsis , Citrus , Arabidopsis/genética , Arabidopsis/metabolismo , Boro/metabolismo , Pared Celular/metabolismo , Citrus/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430374

RESUMEN

The contribution of reactive oxygen species (ROS) and methylglyoxal (MG) formation and removal in high-pH-mediated alleviation of plant copper (Cu)-toxicity remains to be elucidated. Seedlings of sweet orange (Citrus sinensis) were treated with 0.5 (non-Cu-toxicity) or 300 (Cu-toxicity) µM CuCl2 × pH 4.8, 4.0, or 3.0 for 17 weeks. Thereafter, superoxide anion production rate; H2O2 production rate; the concentrations of MG, malondialdehyde (MDA), and antioxidant metabolites (reduced glutathione, ascorbate, phytochelatins, metallothioneins, total non-protein thiols); and the activities of enzymes (antioxidant enzymes, glyoxalases, and sulfur metabolism-related enzymes) in leaves and roots were determined. High pH mitigated oxidative damage in Cu-toxic leaves and roots, thereby conferring sweet orange Cu tolerance. The alleviation of oxidative damage involved enhanced ability to maintain the balance between ROS and MG formation and removal through the downregulation of ROS and MG formation and the coordinated actions of ROS and MG detoxification systems. Low pH (pH 3.0) impaired the balance between ROS and MG formation and removal, thereby causing oxidative damage in Cu-toxic leaves and roots but not in non-Cu-toxic ones. Cu toxicity and low pH had obvious synergistic impacts on ROS and MG generation and removal in leaves and roots. Additionally, 21 (4) parameters in leaves were positively (negatively) related to the corresponding root parameters, implying that there were some similarities and differences in the responses of ROS and MG metabolisms to Cu-pH interactions between leaves and roots.


Asunto(s)
Citrus sinensis , Especies Reactivas de Oxígeno/metabolismo , Citrus sinensis/metabolismo , Piruvaldehído/toxicidad , Piruvaldehído/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas/metabolismo , Concentración de Iones de Hidrógeno
4.
Int J Obes (Lond) ; 44(5): 969-979, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31848456

RESUMEN

BACKGROUND/OBJECTIVES: The current systematic review considered research published within the 10 years preceding June 2019, dealing with the topic of obesity and pain. Within the context of the complex biological and behavioral interrelationships among these phenomena, we sought to identify gaps in the literature and to highlight key targets for future transdisciplinary research. The overarching inclusion criteria were that the included studies could directly contribute to our understanding of these complex phenomena. METHODS: We searched PubMed/Medline/Cochrane databases dating back 10 years, using the primary search terms "obesity" and "pain," and for a secondary search we used the search terms "pain" and "diet quality." RESULTS: Included studies (n = 70) are primarily human; however, some animal studies were included to enhance understanding of related basic biological phenomena and/or where human data were absent or significantly limited. CONCLUSIONS: Our overall conclusions highlight (1) the mechanisms of obesity-related pain (i.e., mechanical, behavioral, and physiological) and potential biological and behavioral contributors (e.g., gender, distribution of body fat, and dietary factors), (2) the requirement for accurate and reliable objective measurement, (3) the need to integrate biological and behavioral contributors into comprehensive, well-controlled prospective study designs.


Asunto(s)
Obesidad , Dolor , Adulto , Comorbilidad , Dieta , Femenino , Humanos , Masculino
5.
Am J Physiol Cell Physiol ; 317(2): C253-C261, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649914

RESUMEN

Myocardial ischemia-reperfusion (I/R) is a common and lethal disease that threatens people's life worldwide. The underlying mechanisms are under intensive study and yet remain unclear. Here, we explored the function of miR-322/503 in myocardial I/R injury. We used isolated rat perfused heart as an in vivo model and H9c2 cells subjected with the oxygen and glucose deprivation followed by reperfusion as in vitro model to study myocardial I/R injury. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to measure the infarct size, and terminal deoxynucleotidyl transferase dUTP-mediated nick-end label (TUNEL) staining was used to examine apoptosis. Quantitative RT-PCR and Western blot were used to determine expression levels of miR-322/503, Smad ubiquitin regulatory factor 2 (Smurf2), enhancer of zeste homolog 2 (EZH2), p-Akt, and p-GSK3ß. Overexpression of miR-322/503 decreased infarct size, inhibited cell apoptosis, and promoted cell proliferation through upregualtion of p-Akt and p-GSK3ß. Thus the expression of miR-322/503 was reduced during I/R process. On the molecular level, miR-322/503 directly bound Smurf2 mRNA and suppressed its translation. Smurf2 ubiquitinated EZH2 and degraded EZH2, which could activate Akt/GSK3ß signaling. Our study demonstrates that miR-322/503 plays a beneficial role in myocardial I/R injury. By inhibition of Smurf2 translation, miR-322/503 induces EZH2 expression and activates Akt/GSK3ß pathway, thereby protecting cells from ischemia reperfusion injury.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Sitios de Unión , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Glucosa/deficiencia , Preparación de Corazón Aislado , Masculino , MicroARNs/genética , Infarto del Miocardio/enzimología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
6.
Cancer Sci ; 110(10): 3204-3214, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31385416

RESUMEN

Peritoneal dissemination is the most frequent metastatic route of ovarian cancer. However, due to the high heterogeneity in ovarian cancer, most conventional studies lack parental tumor controls relevant to metastases and, thus, it is difficult to trace the molecular changes of cancer cells along with the selection by the abdominal microenvironment. Here, we established an in vivo mouse peritoneal dissemination scheme that allowed us to select more aggressive sublines from parental ovarian cancer cells, including A2780 and SKOV-3. Microarray and gene profiling analyses indicated that autophagy-related genes were enriched in selected malignant sublines. Detection of LC3-II, p62 and autophagic puncta demonstrated that these malignant variants were more sensitive to autophagic induction when exposed to diverse stress conditions, such as high cell density, starvation and drug treatment. As compared with parental A2780, the selected variant acquired the ability to grow better under high-density stress; however, this effect was reversed by addition of autophagic inhibitors or knockdown of ATG5. When analyzing the clinical profiles of autophagy-related genes identified to be enriched in malignant A2780 variant, 73% of them had prognostic significance for the survival of ovarian cancer patients. Taken together, our findings indicate that an increase in autophagic potency among ovarian cancer cells is crucial for selection of metastatic colonies in the abdominal microenvironment. In addition, the derived autophagic gene profile can not only predict prognosis well but can also be potentially applied to precision medicine for identifying those ovarian cancer patients suitable for taking anti-autophagy cancer drugs.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Perfilación de la Expresión Génica/métodos , Proteínas Asociadas a Microtúbulos/genética , Neoplasias Ováricas/patología , Neoplasias Peritoneales/secundario , Proteínas de Unión al ARN/genética , Animales , Autofagia , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Ratones , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/patología , Medicina de Precisión , Pronóstico , Microambiente Tumoral
7.
BMC Plant Biol ; 19(1): 477, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694545

RESUMEN

BACKGROUND: Limited data are available on the responses of reactive oxygen species (ROS) and methylglyoxal (MG) metabolisms to low pH in roots and leaves. In China, quite a few of Citrus are cultivated in acidic soils (pH < 5.0). 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) (C. sinensis were more tolerant to low pH than C. grandis) seedlings were irrigated daily with nutrient solution at a pH of 2.5, 3 or 5 for nine months. Thereafter, we examined low pH effects on growth, and superoxide anion production rate (SAP), malondialdehyde (MDA), MG, antioxidants, and enzymes related to ROS and MG detoxification in roots and leaves in order to (a) test the hypothesis that low pH affected ROS and MG metabolisms more in roots than those of leaves, and (b) understand the roles of ROS and MG metabolisms in Citrus low pH-tolerance and -toxicity. RESULTS: Compared with control, most of the physiological parameters related to ROS and MG metabolisms were greatly altered at pH 2.5, but almost unaffected at pH 3. In addition to decreased root growth, many fibrous roots became rotten and died at pH 2.5. pH 2.5-induced changes in SAP, the levels of MDA, MG and antioxidants, and the activities of most enzymes related to ROS and MG metabolisms were greater in roots than those of leaves. Impairment of root ascorbate metabolism was the most serious, especially in C. grandis roots. pH 2.5-induced increases in MDA and MG levels in roots and leaves, decreases in the ratios of ascorbate/(ascorbate+dehydroascorbate) in roots and leaves and of reduced glutathione/(reduced+oxidized glutathione) in roots were greater in C. grandis than those in C. sinensis. CONCLUSIONS: Low pH affected MG and ROS metabolisms more in roots than those in leaves. The most seriously impaired ascorbate metabolism in roots was suggested to play a role in low pH-induced root death and growth inhibition. Low pH-treated C. sinensis roots and leaves had higher capacity to maintain a balance between ROS and MG production and their removal via detoxification systems than low pH-treated C. grandis ones, thus contribute to the higher acid-tolerance of C. sinensis.


Asunto(s)
Citrus/metabolismo , Piruvaldehído/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Citrus sinensis/metabolismo , Concentración de Iones de Hidrógeno , Malondialdehído/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Superóxidos/metabolismo
8.
BMC Plant Biol ; 18(1): 188, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30208853

RESUMEN

BACKGROUND: Rare data are available on the molecular responses of higher plants to low pH. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. Thereafter, we first used 2-dimensional electrophoresis (2-DE) to investigate low pH-responsive proteins in Citrus leaves. Meanwhile, we examined low pH-effects on leaf gas exchange, carbohydrates, ascorbate, dehydroascorbate and malondialdehyde. The objectives were to understand the adaptive mechanisms of Citrus to low pH and to identify the possible candidate proteins for low pH-tolerance. RESULTS: Our results demonstrated that Citrus were tolerant to low pH, with a slightly higher low pH-tolerance in the C. sinensis than in the C. grandis. Using 2-DE, we identified more pH 2.5-responsive proteins than pH 3-responsive proteins in leaves. This paper discussed mainly on the pH 2.5-responsive proteins. pH 2.5 decreased the abundances of proteins involved in ribulose bisphosphate carboxylase/oxygenase activation, Calvin cycle, carbon fixation, chlorophyll biosynthesis and electron transport, hence lowering chlorophyll level, electron transport rate and photosynthesis. The higher oxidative damage in the pH 2.5-treated C. grandis leaves might be due to a combination of factors including higher production of reactive oxygen species, more proteins decreased in abundance involved in antioxidation and detoxification, and lower ascorbate level. Protein and amino acid metabolisms were less affected in the C. sinensis leaves than those in the C. grandis leaves when exposed to pH 2.5. The abundances of proteins related to jasmonic acid biosynthesis and signal transduction were increased and decreased in the pH 2.5-treated C. sinensis and C. grandis leaves, respectively. CONCLUSIONS: This is the first report on low pH-responsive proteins in higher plants. Thus, our results provide some novel information on low pH-toxicity and -tolerance in higher plants.


Asunto(s)
Citrus/metabolismo , Proteínas de Plantas/metabolismo , Adaptación Fisiológica , Electroforesis en Gel Bidimensional , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Hojas de la Planta/metabolismo , Plantones/metabolismo
9.
Ecotoxicol Environ Saf ; 158: 213-222, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29704792

RESUMEN

Little is known about the physiological and molecular responses of leaves to aluminum (Al)-toxicity. Seedlings of Al-intolerant Citrus grandis and Al-tolerant Citrus sinensis were supplied daily with nutrient solution containing 0 mM (control) and 1.0 mM (Al-toxicity) AlCl3·6H2O for 18 weeks. We found that Al-treatment only decreased CO2 assimilation in C. grandis leaves, and that the Al-induced alterations of gene expression profiles were less in C. sinensis leaves than those in C. grandis leaves, indicating that C. sinensis seedlings were more tolerant to Al-toxicity than C. grandis ones. Al concentration was similar between Al-treated C. sinensis and C. grandis roots, but it was higher in Al-treated C. grandis stems and leaves than that in Al-treated C. sinensis stems and leaves. Al-treated C. sinensis seedlings accumulated relatively more Al in roots and transported relatively little Al to shoots. This might be responsible for the higher Al-tolerance of C. sinensis. Further analysis showed that the following several aspects might account for the higher Al-tolerance of C. sinensis, including: (a) Al-treated C. sinensis leaves had higher capacity to maintain the homeostasis of energy and phosphate, the stability of lipid composition and the integrity of cell wall than did Al-treated C. grandis leaves; (b) Al-triggered production of reactive oxygen species (ROS) and the other cytotoxic compounds was less in Al-treated C. sinensis leaves than that in Al-treated C. grandis leaves, because Al-toxicity decreased CO2 assimilation only in C. grandis leaves; accordingly, more upregulated genes involved in the detoxifications of ROS, aldehydes and methylglyoxal were identified in Al-treated C. grandis leaves; in addition, flavonoid concentration was increased only in Al-treated C. grandis leaves; (c) Al-treated C. sinensis leaves could keep a better balance between protein phosphorylation and dephosphorylation than did Al-treated C. grandis leaves; and (d) both the equilibrium of hormones and hormone-mediated signal transduction were greatly disrupted in Al-treated C. grandis leaves, but less altered in Al-treated C. sinensis leaves. Finally, we discussed the differences in Al-responsive genes between Citrus roots and leaves.


Asunto(s)
Aluminio/toxicidad , Citrus/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/metabolismo , Citrus/efectos de los fármacos , Citrus/metabolismo , Relación Dosis-Respuesta a Droga , Flavonoides/análisis , Biblioteca de Genes , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Análisis de Secuencia de ARN
10.
Tree Physiol ; 44(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39109836

RESUMEN

Both copper (Cu) excess and boron (B) deficiency are often observed in some citrus orchard soils. The molecular mechanisms by which B alleviates excessive Cu in citrus are poorly understood. Seedlings of sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) were treated with 0.5 (Cu0.5) or 350 (Cu350 or Cu excess) µM CuCl2 and 2.5 (B2.5) or 25 (B25) µM HBO3 for 24 wk. Thereafter, this study examined the effects of Cu and B treatments on gene expression levels revealed by RNA-Seq, metabolite profiles revealed by a widely targeted metabolome, and related physiological parameters in leaves. Cu350 upregulated 564 genes and 170 metabolites, and downregulated 598 genes and 58 metabolites in leaves of 2.5 µM B-treated seedlings (LB2.5), but it only upregulated 281 genes and 100 metabolites, and downregulated 136 genes and 40 metabolites in leaves of 25 µM B-treated seedlings (LB25). Cu350 decreased the concentrations of sucrose and total soluble sugars and increased the concentrations of starch, glucose, fructose and total nonstructural carbohydrates in LB2.5, but it only increased the glucose concentration in LB25. Further analysis demonstrated that B addition reduced the oxidative damage and alterations in primary and secondary metabolisms caused by Cu350, and alleviated the impairment of Cu350 to photosynthesis and cell wall metabolism, thus improving leaf growth. LB2.5 exhibited some adaptive responses to Cu350 to meet the increasing need for the dissipation of excessive excitation energy (EEE) and the detoxification of reactive oxygen species (reactive aldehydes) and Cu. Cu350 increased photorespiration, xanthophyll cycle-dependent thermal dissipation, nonstructural carbohydrate accumulation, and secondary metabolite biosynthesis and abundances; and upregulated tryptophan metabolism and related metabolite abundances, some antioxidant-related gene expression, and some antioxidant abundances. Additionally, this study identified some metabolic pathways, metabolites and genes that might lead to Cu tolerance in leaves.


Asunto(s)
Boro , Citrus sinensis , Cobre , Metaboloma , Hojas de la Planta , Transcriptoma , Citrus sinensis/genética , Citrus sinensis/efectos de los fármacos , Citrus sinensis/metabolismo , Citrus sinensis/crecimiento & desarrollo , Citrus sinensis/fisiología , Boro/toxicidad , Boro/metabolismo , Boro/farmacología , Cobre/toxicidad , Cobre/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Metaboloma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
11.
Plant Physiol Biochem ; 206: 108318, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159548

RESUMEN

We used manganese (Mn)-tolerant 'Xuegan' (Citrus sinensis) seedlings as materials and examined the characterization of Mn uptake and Mn-activated-release of root exudates under hydroponic conditions. We observed that root and shoot Mn bioaccumulation factor (BCF) reduced with the increase of Mn supply, and that Mn transfer factor (Tf) reduced greatly as Mn supply increased from 0 to 500 µM, beyond which Tf slightly increased with increasing Mn supply, suggesting that Mn supply reduced the ability to absorb and accumulate Mn in roots and shoots, as well as root-to-shoot Mn translocation. Without Mn, roots alkalized the solution pH from 5.0 to above 6.2, while Mn supply reduced root-induced alkalization. As Mn supply increased from 0 to 2000 µM, the secretion of root total phenolics (TPs) increased, while the solution pH decreased. Mn supply did not alter the secretion of root total free amino acids, total soluble sugars, malate, and citrate. Mn-activated-release of TPs was inhibited by low temperature and anion channel inhibitors, but not by protein biosynthesis inhibitor. Using widely targeted metabolome, we detected 48 upregulated [35 upregulated phenolic compounds + 13 other secondary metabolites (SMs)] and three downregulated SMs, and 39 upregulated and eight downregulated primary metabolites (PMs). These findings suggested that reduced ability to absorb and accumulate Mn in roots and shoots and less root-to-shoot Mn translocation in Mn-toxic seedlings, rhizosphere alkalization, and Mn-activated-release of root exudates (especially phenolic compounds) contributed to the high Mn tolerance of C. sinensis seedlings.


Asunto(s)
Citrus sinensis , Citrus , Manganeso/farmacología , Manganeso/metabolismo , Citrus/metabolismo , Rizosfera , Raíces de Plantas/metabolismo , Plantones/metabolismo
12.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38539803

RESUMEN

Citrus is mainly cultivated in acid soil with low boron (B) and high copper (Cu). In this study, Citrus sinensis seedlings were submitted to 0.5 (control) or 350 µM Cu (Cu excess or Cu exposure) and 2.5, 10, or 25 µM B for 24 weeks. Thereafter, H2O2 production rate (HPR), superoxide production rate (SAPR), malondialdehyde, methylglyoxal, and reactive oxygen species (ROS) and methylglyoxal detoxification systems were measured in leaves and roots in order to test the hypothesis that B addition mitigated Cu excess-induced oxidative damage in leaves and roots by reducing the Cu excess-induced formation and accumulation of ROS and MG and by counteracting the impairments of Cu excess on ROS and methylglyoxal detoxification systems. Cu and B treatments displayed an interactive influence on ROS and methylglyoxal formation and their detoxification systems. Cu excess increased the HPR, SAPR, methylglyoxal level, and malondialdehyde level by 10.9% (54.3%), 38.9% (31.4%), 50.3% (24.9%), and 312.4% (585.4%), respectively, in leaves (roots) of 2.5 µM B-treated seedlings, while it only increased the malondialdehyde level by 48.5% (97.8%) in leaves (roots) of 25 µM B-treated seedlings. Additionally, B addition counteracted the impairments of Cu excess on antioxidant enzymes, ascorbate-glutathione cycle, sulfur metabolism-related enzymes, sulfur-containing compounds, and methylglyoxal detoxification system, thereby protecting the leaves and roots of Cu-exposed seedlings against oxidative damage via the coordinated actions of ROS and methylglyoxal removal systems. Our findings corroborated the hypothesis that B addition alleviated Cu excess-induced oxidative damage in leaves and roots by decreasing the Cu excess-induced formation and accumulation of ROS and MG and by lessening the impairments of Cu excess on their detoxification systems. Further analysis indicated that the pathways involved in the B-induced amelioration of oxidative stress caused by Cu excess differed between leaves and roots.

13.
ESC Heart Fail ; 11(2): 986-1000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234115

RESUMEN

AIM: Myocardial injury is a significant cause of death. This study investigated the role and underlying mechanism of interferon-regulatory factor-1 (IRF1) in bevacizumab (BVZ)-induced cardiomyocyte injury. METHODS AND RESULTS: HL-1 cells and C57BL/6 mice receiving BVZ treatment were used to establish in vitro and in vivo models of myocardial injury. The relationship between VEGFA and 14-3-3γ was verified through co-immunoprecipitation and Glutathione S Transferase (GST) pull-down assay. Cell viability and apoptosis were analysed by MTT, propidium iodide (PI) staining and flow cytometry. The release of lactate dehydrogenase (LDH), cardiac troponins T (cTnT), and creatine kinase MB (CK-MB) was measured using the enzyme linked immunosorbent assay. The effects of knocking down IRF1 on BVZ-induced mice were analysed in vivo. IRF1 levels were increased in BVZ-treated HL-1 cells. BVZ treatment induced apoptosis, inhibited cell viability, and promoted the release of LDH, cTnT, and CK-MB. IRF1 silencing suppressed BVZ-induced myocardial injury, whereas IRF1 overexpression had the opposite effect. IRF1 regulated VEGFA expression by binding to its promoter, with the depletion of VEGFA or 14-3-3γ reversing the effects of IRF1 knockdown on the cell viability and apoptosis of BVZ-treated HL-1 cells. 14-3-3γ overexpression promoted cell proliferation, inhibited apoptosis, and reduced the release of LDH, cTnT, and CK-MB, thereby alleviating BVZ-induced HL-1 cell damage. In vivo, IRF1 silencing alleviated BVZ-induced cardiomyocyte injury by regulating the VEGFA/14-3-3γ axis. CONCLUSION: The IRF1-mediated VEGFA/14-3-3γ signalling pathway promotes BVZ-induced myocardial injury. Our study provides evidence for potentially new target genes for the treatment of myocardial injury.


Asunto(s)
Cardiotoxicidad , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Bevacizumab/farmacología , Ratones Endogámicos C57BL , Interferones
14.
Mol Genet Metab Rep ; 38: 101025, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38125072

RESUMEN

Background: LBSL is a mitochondrial disorder caused by mutations in the mitochondrial aspartyl-tRNA synthetase gene DARS2, resulting in a distinctive pattern on brain magnetic resonance imaging (MRI) and spectroscopy. Clinical presentation varies from severe infantile to chronic, slowly progressive neuronal deterioration in adolescents or adults. Most individuals with LBSL are compound heterozygous for one splicing defect in an intron 2 mutational hotspot and a second defect that could be a missense, non-sense, or splice site mutation or deletion resulting in decreased expression of the full-length protein. Aim: To present a new family with two affected members with LBSL and report a novel DARS2 mutation. Results: An 8-year-old boy (Patient 1) was referred due to headaches and abnormal MRI, suggestive of LBSL. Genetic testing revealed a previously reported c.492 + 2 T > C mutation in the DARS2 gene. Sanger sequencing uncovered a novel variant c.228-17C > G in the intron 2 hotspot. Family studies found the same genetic changes in an asymptomatic 4-year-old younger brother (Patient 2), who was found on follow-up to have an abnormal MRI. mRNA extracted from patients' fibroblasts showed that the c.228-17C > G mutation caused skipping of exon 3 resulting in lower DARS2 mRNA level. Complete absence of DARS2 protein was also found in both patients. Summary: We present a new family with two children affected with LBSL and describe a novel mutation in the DARS2 intron 2 hotspot. Despite findings of extensive white matter disease in the brain and spine, the proband in this family presented only with headaches, while the younger sibling, who also had extensive white matter changes, was asymptomatic. Our in-vitro results confirmed skipping of exon 3 in patients and family members carrying the intron 2 variant, which is consistent with previous reported mutations in intron 2 hotspots. DARS2 mRNA and protein levels were also reduced in both patients, further supporting the pathogenicity of the novel variant.

15.
Plants (Basel) ; 12(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299123

RESUMEN

The effects of copper (Cu)-pH interactions on the levels of hormones and related metabolites (HRMs) in Citrus sinensis leaves and roots were investigated. Our findings indicated that increased pH mitigated Cu toxicity-induced alterations of HRMs, and Cu toxicity increased low-pH-induced alterations of HRMs. Increased pH-mediated decreases in ABA, jasmonates, gibberellins, and cytokinins, increases in (±)strigol and 1-aminocyclopropanecarboxylic acid, and efficient maintenance of salicylates and auxins homeostasis in 300 µM Cu-treated roots (RCu300); as well as efficient maintenance of hormone homeostasis in 300 µM Cu-treated leaves (LCu300) might contribute to improved leaf and root growth. The upregulation of auxins (IAA), cytokinins, gibberellins, ABA, and salicylates in pH 3.0 + 300 µM Cu-treated leaves (P3CL) vs. pH 3.0 + 0.5 µM Cu-treated leaves (P3L) and pH 3.0 + 300 µM Cu-treated roots (P3CR) vs. pH 3.0 + 0.5 µM Cu-treated roots (P3R) might be an adaptive response to Cu toxicity, so as to cope with the increased need for reactive oxygen species and Cu detoxification in LCu300 and RCu300. Increased accumulation of stress-related hormones (jasmonates and ABA) in P3CL vs. P3L and P3CR vs. P3R might reduce photosynthesis and accumulation of dry matter, and trigger leaf and root senescence, thereby inhibiting their growth.

16.
Antioxidants (Basel) ; 12(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37237903

RESUMEN

Tetrahydrobiopterin (BH4) is an endogenous cofactor for some enzymatic conversions of essential biomolecules, including nitric oxide, and monoamine neurotransmitters, and for the metabolism of phenylalanine and lipid esters. Over the last decade, BH4 metabolism has emerged as a promising metabolic target for negatively modulating toxic pathways that may result in cell death. Strong preclinical evidence has shown that BH4 metabolism has multiple biological roles beyond its traditional cofactor activity. We have shown that BH4 supports essential pathways, e.g., to generate energy, to enhance the antioxidant resistance of cells against stressful conditions, and to protect from sustained inflammation, among others. Therefore, BH4 should not be understood solely as an enzyme cofactor, but should instead be depicted as a cytoprotective pathway that is finely regulated by the interaction of three different metabolic pathways, thus assuring specific intracellular concentrations. Here, we bring state-of-the-art information about the dependency of mitochondrial activity upon the availability of BH4, as well as the cytoprotective pathways that are enhanced after BH4 exposure. We also bring evidence about the potential use of BH4 as a new pharmacological option for diseases in which mitochondrial disfunction has been implicated, including chronic metabolic disorders, neurodegenerative diseases, and primary mitochondriopathies.

17.
Int J Hyg Environ Health ; 252: 114211, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37393842

RESUMEN

Animal and epidemiologic studies suggest that there may be adverse health effects from exposure to glyphosate, the most highly used pesticide in the world, and its metabolite aminomethylphosphonic acid (AMPA). Meanwhile, consumption of organic foods (presumably grown free of chemical pesticides) has increased in recent years. However, there have been limited biomonitoring studies assessing the levels of human glyphosate and AMPA exposure in the United States. We examined urinary levels of glyphosate and AMPA in the context of organic eating behavior in a cohort of healthy postmenopausal women residing in Southern California and evaluated associations with demographics, dietary intake, and other lifestyle factors. 338 women provided two first-morning urine samples and at least one paired 24-h dietary recall reporting the previous day's dietary intake. Urinary glyphosate and AMPA were measured using LC-MS/MS. Participants reported on demographic and lifestyle factors via questionnaires. Potential associations were examined between these factors and urinary glyphosate and AMPA concentrations. Glyphosate was detected in 89.9% of urine samples and AMPA in 67.2%. 37.9% of study participants reported often or always eating organic food, 30.2% sometimes, and 32.0% seldom or never. Frequency of organic food consumption was associated with several demographic and lifestyle factors. Frequent organic eaters had significantly lower urinary glyphosate and AMPA levels, but not after adjustment for covariates. Grain consumption was significantly associated with higher urinary glyphosate levels, even among women who reported often or always eating organic grains. Soy protein and alcohol consumption as well as high frequency of eating fast food were associated with higher urinary AMPA levels. In conclusion, in the largest study to date examining paired dietary recall data and measurements of first-void urinary glyphosate and AMPA, the vast majority of subjects sampled had detectable levels, and significant dietary sources in the American diet were identified.


Asunto(s)
Herbicidas , Plaguicidas , Animales , Humanos , Femenino , Estudios Transversales , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Herbicidas/orina , Cromatografía Liquida , Posmenopausia , Espectrometría de Masas en Tándem , Conducta Alimentaria , Ingestión de Alimentos , Glifosato
18.
J Biol Chem ; 286(14): 12439-49, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21288892

RESUMEN

Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-ß peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Aparato de Golgi/metabolismo , Secuencia de Aminoácidos , Aminoaciltransferasas/metabolismo , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
19.
Nutr Res ; 104: 44-54, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605541

RESUMEN

Whey protein (WP) can increase insulin secretion, produce an incretin effect, delay gastric emptying, and regulate appetite, resulting in improved glycemic control. We hypothesized that WP supplementation is associated with postprandial glycemia regulation in persons with type 2 diabetes mellitus (T2DM) and conducted a quantitative meta-analysis of randomized controlled trials (RCTs) to test this hypothesis. We searched PubMed, Embase, Cochrane Library, Scopus databases, and the ClinicalTrials.gov registry for relevant RCTs published before March 2022. We assessed the pooled effects using a random-effects model on glucose and insulin levels at 60 and 120 minutes, total glucagon-like peptide-1 (tGLP-1) at 30 and 60 minutes, and the incremental area under the curve (iAUC) of glucose, insulin, tGLP-1, and glucose-dependent insulinotropic polypeptide. Five RCTs involving 134 persons were included. Postprandial glycemia was significantly lower at 60 minutes (weighted mean difference: -2.67 mmol/L; 95% confidence interval, -3.62 to -1.72 mmol/L) and 120 minutes (-1.59 mmol/L; -2.91 to -0.28 mmol/L) in WP group than in placebo group. The iAUC of insulin was significantly higher in WP group (24.66 nmol/L × min, 1.65-47.66 nmol/L × min) than in placebo group. Although other results favored the WP group, differences between the groups were not statistically significant. The present study showed that premeal WP supplementation is beneficial for postprandial glycemia in persons with mild or well-controlled T2DM without substantial adverse effects. However, the level of certainty of current evidence is not high enough. Further larger and well-designed clinical trials are warranted for evaluating optimal dose and long-term effects of WP supplementation.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Dietéticos , Humanos , Insulina/metabolismo , Periodo Posprandial , Ensayos Clínicos Controlados Aleatorios como Asunto , Proteína de Suero de Leche
20.
Chemosphere ; 299: 134335, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35339530

RESUMEN

Little is known about the effects of pH-aluminum (Al) interactions on gene expression and/or metabolite profiles in plants. Eleven-week-old seedlings of Citrus sinensis were fertilized with nutrient solution at an Al level of 0 or 1 mM and a pH of 3.0 or 4.0 for 18 weeks. Increased pH mitigated Al-toxicity-induced accumulation of callose, an Al-sensitive marker. In this study, we identified more differentially expressed genes and differentially abundant metabolites in pH 4.0 + 1 mM Al-treated roots (P4AR) vs pH 4.0 + 0 mM Al-treated roots (P4R) than in pH 3.0 + 1 mM Al-treated roots (P3AR) vs pH 3.0 + 0 mM Al-treated roots (P3R), suggesting that increased pH enhanced root metabolic adaptations to Al-toxicity. Further analysis indicated that increased pH-mediated mitigation of root Al-toxicity might be related to several factors, including: enhanced capacity to maintain the homeostasis of phosphate and energy and the balance between generation and scavenging of reactive oxygen species and aldehydes; and elevated accumulation of secondary metabolites such as polyphenol, proanthocyanidins and phenolamides and adaptations of cell wall and plasma membrane to Al-toxicity.


Asunto(s)
Citrus sinensis , Citrus , Aluminio/metabolismo , Citrus sinensis/metabolismo , Concentración de Iones de Hidrógeno , Metaboloma , Raíces de Plantas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA