Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795473

RESUMEN

Underwater wireless sensor networks (UWSNs) have become a popular research topic due to the challenges of underwater communication. The existing mechanisms for collecting data from UWSNs focus on reducing the data redundancy and communication energy consumption, while ignoring the problem of energy-saving transmission after compression. In order to improve the efficiency of data collection, we propose a data uploading decision-making strategy based on the high similarity of the collected data and the energy consumption of the high similarity data compression. This decision-making strategy efficiently optimizes the energy consumption of the networks. By analyzing the data similarity, the quality of network communication, and uploading energy consumption, the decision-making strategy provides an energy-efficient data upload strategy for underwater nodes, which reduces the energy consumption in various network settings. The simulation results show that compared with several existing data compression and uploading methods, the proposed data upload methods has better energy saving effect in different network scenarios.

2.
Sci Rep ; 14(1): 19140, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160336

RESUMEN

In recent years, researchers have taken the many-objective optimization algorithm, which can optimize 5, 8, 10, 15, 20 objective functions simultaneously, as a new research topic. However, the current research on many-objective optimization technology also encounters some challenges. For example: Pareto resistance phenomenon, difficult diversity maintenance. Based on the above problems, this paper proposes a many-objective evolutionary algorithm based on three states (MOEA/TS). Firstly, a feature extraction operator is proposed. It can extract the features of the high-quality solution set, and then assist the evolution of the current individual. Secondly, based on Pareto front layer, the concept of "individual importance degree" is proposed. The importance degree of an individual can reflect the importance of the individual in the same Pareto front layer, so as to further distinguish the advantages and disadvantages of different individuals in the same front layer. Then, a repulsion field method is proposed. The diversity of the population in the objective space is maintained by the repulsion field, so that the population can be evenly distributed on the real Pareto front. Finally, a new concurrent algorithm framework is designed. In the algorithm framework, the algorithm is divided into three states, and each state focuses on a specific task. The population can switch freely among these three states according to its own evolution. The MOEA/TS algorithm is compared with 7 advanced many-objective optimization algorithms. The experimental results show that the MOEA/TS algorithm is more competitive in many-objective optimization problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA