Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Genomics ; 25(1): 176, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355434

RESUMEN

BACKGROUND: Xinjiang Mongolian cattle is an indigenous breed that inhabits the Taklimakan Desert and is characterized by its small body size. However, the genomic diversity, origin, and genetic basis underlying the adaptation to the desert environment have been poorly studied. RESULTS: We analyzed patterns of Xinjiang Mongolian cattle genetic variation by sequencing 20 genomes together with seven previously sequenced genomes and comparing them to the 134 genomes of nine representative breeds worldwide. Among the breeds of Bos taurus, we found the highest nucleotide diversity (0.0024) associated with the lower inbreeding coefficient (2.0110-6), the lowest linkage disequilibrium (r2 = 0.3889 at distance of 10 kb), and the highest effective population size (181 at 20 generations ago) in Xinjiang Mongolian cattle. The genomic diversity pattern could be explained by a limited introgression of Bos indicus genes. More importantly, similarly to desert-adapted camel and same-habitat sheep, we also identified signatures of selection including genes, GO terms, and/or KEGG pathways controlling water reabsorption and osmoregulation, metabolic regulation and energy balance, as well as small body size in Xinjiang Mongolian cattle. CONCLUSIONS: Our results imply that Xinjiang Mongolian cattle might have acquired distinct genomic diversity by virtue of the introgression of Bos indicus, which helps understand the demographic history. The identification of selection signatures can provide novel insights into the genomic basis underlying the adaptation of Xinjiang Mongolian cattle to the desert environment.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Bovinos/genética , Animales , Ovinos , Genoma , Endogamia , Genómica
2.
Anim Genet ; 55(3): 377-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561945

RESUMEN

The Kazakh cattle in the Xinjiang Uygur Autonomous Region of China are highly adaptable and have multiple uses, including milk and meat production, and use as draft animals. They are an excellent original breed that could be enhanced by breeding and hybrid improvement. However, the genomic diversity and signature of selection underlying the germplasm characteristics require further elucidation. Herein, we evaluated 26 Kazakh cattle genomes in comparison with 103 genomes of seven other cattle breeds from regions around the world to assess the Kazakh cattle genetic variability. We revealed that the relatively low linkage disequilibrium at large SNP distances was strongly correlated with the largest effective population size among Kazakh cattle. Using population structural analysis, we next demonstrated a taurine lineage with restricted Bos indicus introgression among Kazakh cattle. Notably, we identified putative selected genes associated with resistance to disease and body size within Kazakh cattle. Together, our findings shed light on the evolutionary history and breeding profile of Kazakh cattle, as well as offering indispensable resources for germplasm resource conservation and crossbreeding program implementation.


Asunto(s)
Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Secuenciación Completa del Genoma/veterinaria , China , Cruzamiento , Genoma , Desequilibrio de Ligamiento , Variación Genética , Selección Genética
3.
BMC Genomics ; 23(1): 722, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273119

RESUMEN

BACKGROUND: Merino sheep exhibit high wool production and excellent wool quality. The fleece of Merino sheep is predominantly composed of wool fibers grown from hair follicles (HFs). The HF is a complex biological system involved in a dynamic process governed by gene regulation, and gene expression is regulated by microRNAs (miRNAs). miRNA inhibits posttranscriptional gene expression by specifically binding to target messenger RNA (mRNA) and plays an important role in regulating gene expression, the cell cycle and biological development sequences. The purpose of this study was to examine mRNA and miRNA binding to identify key miRNAs and target genes related to HF development. This will provide new and important insights into fundamental mechanisms that regulate cellular activity and cell fate decisions within and outside of the skin. RESULTS: We analyzed miRNA data in skin tissues collected from 18 Merino sheep on four embryonic days (E65, E85, E105 and E135) and two postnatal days (D7 and D30) and identified 87 differentially expressed miRNAs (DE-miRNAs). These six stages were further divided into two longer developmental stages based on heatmap cluster analysis, and the results showed that DE-mRNAs in Stage A were closely related to HF morphogenesis. A coanalysis of Stage A DE-mRNAs and DE-miRNAs revealed that 9 DE-miRNAs and 17 DE-mRNAs presented targeting relationships in Stage A. We found that miR-23b and miR-133 could target and regulate ACVR1B and WNT10A. In dermal fibroblasts, the overexpression of miR-133 significantly reduced the mRNA and protein expression levels of ACVR1B. The overexpression of miR-23b significantly reduced the mRNA and protein expression levels of WNT10A. CONCLUSION: This study provides a new reference for understanding the molecular basis of HF development and lays a foundation for further improving sheep HF breeding. miRNAs and target genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine-wool sheep.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica/métodos , Folículo Piloso , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica
4.
BMC Genomics ; 23(1): 428, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35672687

RESUMEN

BACKGROUND: Merino sheep are the most famous fine wool sheep in the world. They have high wool production and excellent wool quality and have attracted worldwide attention. The fleece of the Merino sheep is composed predominantly of wool fibers grown from secondary wool follicles. Therefore, it is necessary to study the development of hair follicles to understand the mechanism of wool production. The hair follicle is a complex biological system involved in a dynamic process governed by gene regulation. The hair follicle development process is very complex and poorly understood. The purpose of our research is to identify candidate genes related to hair follicle development, provide a theoretical molecular breeding basis for the cultivation of fine wool sheep, and provide a reference for the problems of hair loss and alopecia areata that affect human beings. RESULTS: We analyzed mRNAs data in skin tissues of 18 Merino sheep at four embryonic days (E65, E85, E105 and E135) and two postnatal days (P7 and P30). G1 to G6 represent hair follicles developmental at six stages (i.e. E65 to P30). We identified 7879 differentially expressed genes (DEGs) and 12623 novel DEGs, revealed different expression patterns of these DEGs at six stages of hair follicle development, and demonstrated their complex interactions. DEGs with stage-specific expression were significantly enriched in epidermal differentiation and development, hair follicle development and hair follicle morphogenesis and were enriched in many pathways related to hair follicle development. The key genes (LAMA5, WNT10A, KRT25, SOSTDC1, ZDHHC21, FZD1, BMP7, LRP4, TGFß2, TMEM79, SOX10, ITGB4, KRT14, ITGA6, and GLI2) affecting hair follicle morphogenesis were identified by network analysis. CONCLUSION: This study provides a new reference for the molecular basis of hair follicle development and lays a foundation for further improving sheep hair follicle breeding. Candidate genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine wool sheep. These results are a valuable resource for biological investigations of fleece evolution in animals.


Asunto(s)
Redes Reguladoras de Genes , Folículo Piloso , Animales , Cabello , Ovinos/genética , Oveja Doméstica , Lana
5.
BMC Vet Res ; 18(1): 167, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524260

RESUMEN

BACKGROUND: Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS: We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3ß, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/ß-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFß, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION: This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.


Asunto(s)
ARN Largo no Codificante , Animales , Perfilación de la Expresión Génica/veterinaria , Glucógeno Sintasa Quinasa 3 beta , Cabras/metabolismo , Folículo Piloso/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , RNA-Seq/veterinaria
6.
Anim Biotechnol ; 33(7): 1738-1745, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33587650

RESUMEN

Adiponectin, also known as ADIPOQ, is a hormone protein secreted by adipocytes. The ADIPOQ gene is expressed primarily in adipose tissue, and the encoded protein circulates in the bloodstream and has the potential to regulate both animal fat metabolism and hormone production. Our previous work uncovered a 67-bp variable duplication in the promoter region of ADIPOQ, which reduced the basal transcriptional activity of ADIPOQ in the 3T3_L1 cell and also inhibits the ADIPOQ mRNA expression in adipose tissue. Accordingly, the present study aimed to identify the relationship between the 67-bp structural variations in ADIPOQ promoter region and the milk traits of Xinjiang brown cattle (XJBC). The results revealed two genotypes, DD and ID, in the XJBC, and minor allelic frequency (MAF) for the 'I' allele was more than 1%. Moreover, the association analysis revealed that the 67-bp duplication in the promoter region of the ADIPOQ gene was significantly correlated with the 305 days of milk production volume, fat yield, and milk fat percentage in the XJBC (p < 0.05). These results obtained in this study suggested that the identified variable duplication could be considered as the potential genetic marker for improving milk traits of XJBC.


Asunto(s)
Adiponectina , Leche , Bovinos/genética , Animales , Leche/metabolismo , Fenotipo , Genotipo , Adiponectina/genética , Adiponectina/metabolismo , Regiones Promotoras Genéticas/genética
7.
BMC Biol ; 19(1): 197, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503498

RESUMEN

BACKGROUND: Characterization of the molecular mechanisms underlying hair follicle development is of paramount importance in the genetic improvement of wool-related traits in sheep and skin-related traits in humans. The Merino is the most important breed of fine-wooled sheep in the world. In this study, we systematically investigated the complexity of sheep hair follicle development by integrating transcriptome and methylome datasets from Merino sheep skin. RESULTS: We analysed 72 sequence datasets, including DNA methylome and the whole transcriptome of four gene types, i.e. protein-coding genes (PCGs), lncRNAs, circRNAs, and miRNAs, across four embryonic days (E65, E85, E105, and E135) and two postnatal days (P7 and P30) from the skin tissue of 18 Merino sheep. We revealed distinct expression profiles of these four gene types across six hair follicle developmental stages, and demonstrated their complex interactions with DNA methylation. PCGs with stage-specific expression or regulated by stage-specific lncRNAs, circRNAs, and miRNAs were significantly enriched in epithelial differentiation and hair follicle morphogenesis. Regulatory network and gene co-expression analyses identified key transcripts controlling hair follicle development. We further predicted transcriptional factors (e.g. KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3) with stage-specific involvement in hair follicle morphogenesis. Through integrating these stage-specific genomic features with results from genome-wide association studies (GWAS) of five wool-related traits in 7135 Merino sheep, we detected developmental stages and genes that were relevant with wool-related traits in sheep. For instance, genes that were specifically upregulated at E105 were significantly associated with most of wool-related traits. A phenome-wide association study (PheWAS) demonstrated that candidate genes of wool-related traits (e.g. SPHK1, GHR, PPP1R27, CSRP2, EEF1A2, and PTPN1) in sheep were also significantly associated with dermatological, metabolic, and immune traits in humans. CONCLUSIONS: Our study provides novel insights into the molecular basis of hair follicle morphogenesis and will serve as a foundation to improve breeding for wool traits in sheep. It also indicates the importance of studying gene expression in the normal development of organs in understanding the genetic architecture of economically important traits in livestock. The datasets generated here are useful resources for functionally annotating the sheep genome, and for elucidating early skin development in mammals, including humans.


Asunto(s)
Epigenoma , MicroARNs , ARN Largo no Codificante , Transcriptoma , Lana , Animales , Estudio de Asociación del Genoma Completo , Folículo Piloso , MicroARNs/genética , ARN Circular , Ovinos
8.
Genet Sel Evol ; 53(1): 56, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193030

RESUMEN

BACKGROUND: Genetic improvement of wool and growth traits is a major goal in the sheep industry, but their underlying genetic architecture remains elusive. To improve our understanding of these mechanisms, we conducted a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW). RESULTS: Our dataset comprised 7135 individuals with phenotype data, among which 1217 had high-density (HD) genotype data (n = 372,534). The genotypes of 707 of these animals were imputed from the Illumina Ovine single nucleotide polymorphism (SNP) 54 BeadChip to the HD Array. The heritability of these traits ranged from 0.05 (CVFD) to 0.36 (MFD), and between-trait genetic correlations ranged from - 0.44 (CN vs. LW) to 0.77 (GFW vs. LW). By integrating the GWAS signals with RNA-seq data from 500 samples (representing 87 tissue types from 16 animals), we detected tissues that were relevant to each of the six traits, e.g. liver, muscle and the gastrointestinal (GI) tract were the most relevant tissues for LW, and leukocytes and macrophages were the most relevant cells for CN. For the six traits, 54 quantitative trait loci (QTL) were identified covering 81 candidate genes on 21 ovine autosomes. Multiple candidate genes showed strong tissue-specific expression, e.g. BNC1 (associated with MFD) and CHRNB1 (LW) were specifically expressed in skin and muscle, respectively. By conducting phenome-wide association studies (PheWAS) in humans, we found that orthologues of several of these candidate genes were significantly (FDR < 0.05) associated with similar traits in humans, e.g. BNC1 was significantly associated with MFD in sheep and with hair colour in humans, and CHRNB1 was significantly associated with LW in sheep and with body mass index in humans. CONCLUSIONS: Our findings provide novel insights into the biological and genetic mechanisms underlying wool and growth traits, and thus will contribute to the genetic improvement and gene mapping of complex traits in sheep.


Asunto(s)
Peso Corporal/genética , Polimorfismo de Nucleótido Simple , Ovinos/genética , Transcriptoma , Fibra de Lana/normas , Animales , Estudio de Asociación del Genoma Completo/métodos , Leucocitos/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Selección Artificial , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Appl Opt ; 60(26): 7858-7868, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34613044

RESUMEN

An unsupervised single-image dehazing method using a multiple scattering model is proposed. The method uses an undegraded atmospheric multiple scattering model and unsupervised learning to implement dehazing on single real-world image. The atmospheric multiple scattering model can avoid the influence of multiple scattering on the image and the unsupervised neural network can avoid the intensive operation on the data set. In this method, three unsupervised learning branches and a blur kernel estimation module estimate the scene radiation layer, transmission layer, atmospheric light layer, and blur kernel layer, respectively. In addition, the unsupervised loss function is constructed by prior knowledge to constrain the unsupervised branches. Finally, the output of the three unsupervised branches and the blur kernel estimation module synthesizes the haze image in a self-supervised way. A large number of experiments show that the proposed method has good performance in image dehazing compared with the six most advanced dehazing methods.

10.
Anim Biotechnol ; 32(4): 486-494, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32401148

RESUMEN

In our previous genome-wide association study (GWAS), we identified the fragile histidine triad diadenosine triphosphatase (FHIT) gene in Xinjiang brown cattle (XJBC) as a candidate gene associated with cattle productive traits, with potential application in mark-assisted selection (MAS) in cattle breeding. FHIT is a prototype of a class of tumor suppressor genes that contain genomic loci mapped to common fragile loci. Here, 388 healthy and unrelated XJBC were selected to identify insertion/deletion (InDel) variants in the bovine FHIT and assess their effects on milk traits. Eight of the thirteen InDel loci were found to be polymorphic in FHIT. The polymorphism information content of the eight loci ranged from 0.061 to 0.375. The correlation analysis showed that all the new InDel variants were significantly related to six different milk traits (p < 0.05). The following variants presented a significant relationship with productive traits: P2-23bp with the 305 milk yield (p = 0.005) in the sixth parity; P3-24bp with the milk fat yield (p = 0.009) in the third parity; P5-21bp with the somatic cell score (p = 0.001) in the first parity and with the milk protein percentage (p = 0.002) in the sixth parity; and P7-26bp with the somatic cell score (p = 0.003) in the sixth parity. These findings will help evaluate InDel genotypes, within and between cattle breeds and identify potential target loci to accelerate progress in MAS in cattle breeding.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Bovinos , Mutación INDEL , Lactancia/genética , Proteínas de Neoplasias/genética , Animales , Bovinos/genética , Leche
11.
BMC Genomics ; 20(1): 827, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703627

RESUMEN

BACKGROUND: Dual-purpose cattle are more adaptive to environmental challenges than single-purpose dairy or beef cattle. Balance among milk, reproductive, and mastitis resistance traits in breeding programs is therefore more critical for dual-purpose cattle to increase net income and maintain well-being. With dual-purpose Xinjiang Brown cattle adapted to the Xinjiang Region in northwestern China, we conducted genome-wide association studies (GWAS) to dissect the genetic architecture related to milk, reproductive, and mastitis resistance traits. Phenotypic data were collected for 2410 individuals measured during 1995-2017. By adding another 445 ancestors, a total of 2855 related individuals were used to derive estimated breeding values for all individuals, including the 2410 individuals with phenotypes. Among phenotyped individuals, we genotyped 403 cows with the Illumina 150 K Bovine BeadChip. RESULTS: GWAS were conducted with the FarmCPU (Fixed and random model circulating probability unification) method. We identified 12 markers significantly associated with six of the 10 traits under the threshold of 5% after a Bonferroni multiple test correction. Seven of these SNPs were in QTL regions previously identified to be associated with related traits. One identified SNP, BovineHD1600006691, was significantly associated with both age at first service and age at first calving. This SNP directly overlapped a QTL previously reported to be associated with calving ease. Within 160 Kb upstream and downstream of each significant SNP identified, we speculated candidate genes based on functionality. Four of the SNPs were located within four candidate genes, including CDH2, which is linked to milk fat percentage, and GABRG2, which is associated with milk protein yield. CONCLUSIONS: These findings are beneficial not only for breeding through marker-assisted selection, but also for genome editing underlying the related traits to enhance the overall performance of dual-purpose cattle.


Asunto(s)
Bovinos/genética , Bovinos/fisiología , Estudio de Asociación del Genoma Completo , Leche/metabolismo , Reproducción/genética , Animales , Bovinos/metabolismo , Resistencia a la Enfermedad/genética , Femenino , Mastitis/genética , Fenotipo
12.
Asian-Australas J Anim Sci ; 31(6): 775-783, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29103286

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the genetic effects of six keratin (KRT) genes on the wool traits of 418 Chinese Merino (Xinjiang type) (CMXT) individuals. METHODS: To explore the effects and association of six KRT genes on sheep wool traits, The polymerase chain reaction-based single-strand conformation polymorphism (PCR-SSCP), DNA sequencing, and the gene pyramiding effect methods were used. RESULTS: We report 20 mutation sites (single-nucleotide polymorphisms) within the six KRT genes, in which twelve induced silent mutations; five induced missense mutations and resulted in Ile→Thr, Glu→Asp, Gly→Ala, Ala→Ser, Se→His; two were nonsense mutations and one was a same-sense mutation. Association analysis showed that two genotypes of the KRT31 gene were significantly associated with fiber diameter (p<0.05); three genotypes of the KRT36 gene were significantly associated with wool fineness score and fiber diameter (p<0.05), three genotypes of the KRT38 gene were significantly associated with the number of crimps (p< 0.05); and three genotypes of the KRT85 gene were significantly associated with wool crimps score, body size, and fiber diameter (p<0.05). Analysis of the gene pyramiding effect between the different genotypes of the gene loci KRT36, KRT38, and KRT85, each genotype in a gene locus was combined with all the genotypes of another two gene loci and formed the different three loci combinations, indicated a total of 26 types of possible combined genotypes in the analyzed population. Compared with the other combined genotypes, the combinations CC-GG-II, CC-HH-IJ, CC-HH-JJ, DD-HH-JJ, CC-GH-IJ, and CC-GH-JJ at gene loci KRT36, KRT38, and KRT85, respectively, had a greater effect on wool traits (p<0.05). CONCLUSION: Our results indicate that the mutation loci of KRT31, KRT36, KRT38, and KRT85 genes, as well as the combinations at gene loci KRT36, KRT38, and KRT85 in CMXT have significant effects on wool traits, suggesting that these genes are important candidate genes for wool traits, which will contribute to sheep breeding and provide a molecular basis for improved wool quality in sheep.

14.
Asian-Australas J Anim Sci ; 28(4): 467-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25656186

RESUMEN

Improvement for carcass traits related to beef quality is the key concern in beef production. Recent reports found that epigenetics mediates the interaction of individuals with environment and nutrition. The present study was designed to analyze the genetic effect of single nucleotide polymorphisms (SNPs) in seven epigenetic-related genes (DNMT1, DNMT3a, DNMT3b, DNMT3L, Ago1, Ago2, and HDAC5) and two meat quality candidate genes (CAPN1 and PRKAG3) on fourteen carcass traits related to beef quality in a Snow Dragon beef population, and also to identify SNPs in a total of fourteen cattle populations. Sixteen SNPs were identified and genotyped in 383 individuals sampled from the 14 cattle breeds, which included 147 samples from the Snow Dragon beef population. Data analysis showed significant association of 8 SNPs within 4 genes related to carcass and/or meat quality traits in the beef populations. SNP1 (13154420A>G) in exon 17 of DNMT1 was significantly associated with rib-eye width and lean meat color score (p<0.05). A novel SNP (SNP4, 76198537A>G) of DNMT3a was significantly associated with six beef quality traits. Those individuals with the wild-type genotype AA of DNMT3a showed an increase in carcass weight, chilled carcass weight, flank thicknesses, chuck short rib thickness, chuck short rib score and in chuck flap weight in contrast to the GG genotype. Five out of six SNPs in DNMT3b gene were significantly associated with three beef quality traits. SNP15 (45219258C>T) in CAPN1 was significantly associated with chuck short rib thickness and lean meat color score (p<0.05). The significant effect of SNP15 on lean meat color score individually and in combination with each of other 14 SNPs qualify this SNP to be used as potential marker for improving the trait. In addition, the frequencies of most wild-type alleles were higher than those of the mutant alleles in the native and foreign cattle breeds. Seven SNPs were identified in the epigenetic-related genes. The SNP15 in CAPN1 could be used as a powerful genetic marker in selection programs for beef quality improvement in the Snow Dragon Beef population.

15.
PLoS One ; 19(2): e0298739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38416764

RESUMEN

With the rapid development of ocean observation technology, underwater object detection has begun to occupy an essential position in the fields of aquaculture, environmental monitoring, marine science, etc. However, due to the problems unique to underwater images such as severe noise, blurred objects, and multi-scale, deep learning-based target detection algorithms lack sufficient capabilities to cope with these challenges. To address these issues, we improve DETR to make it well suited for underwater scenarios. First, a simple and effective learnable query recall mechanism is proposed to mitigate the effect of noise and can significantly improve the detection performance of the object. Second, for underwater small and irregular object detection, a lightweight adapter is designed to provide multi-scale features for the encoding and decoding stages. Third, the regression mechanism of the bounding box is optimized using the combination loss of smooth L1 and CIoU. Finally, we validate the designed network against other state-of-the-art methods on the RUOD dataset. The experimental results show that the proposed method is effective.


Asunto(s)
Algoritmos , Programas Informáticos , Acuicultura , Monitoreo del Ambiente , Recuerdo Mental , Oligonucleótidos
16.
Animals (Basel) ; 14(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38929367

RESUMEN

Xinjiang Brown cattle are a unique and widely distributed breed of dual-purpose cattle in the Xinjiang area of China, whose milk production performance differs from Holstein cattle. It has been known that variations in bacterial species of the gastrointestinal tract influence milk protein, fat, and lactose synthesis. However, the microbiota differences between Xinjiang Brown and Holstein cattle are less known. This study aims to compare the bacterial community composition of the rumen and feces of these two cattle breeds under the same dietary and management conditions. The 16s rRNA sequencing data and milk production of 18 Xinjiang Brown cows and 20 Holstein cows on the same farm were obtained for analysis. The results confirmed differences in milk production between Xinjiang Brown and Holstein cattle. Microbiota with different relative abundance between these two cattle breeds were identified, and their biological functions might be related to milk synthesis. This study increases the understanding of the differences in microbiota between Xinjiang Brown and Holstein cattle and might provide helpful information for microbiota composition optimization of these dairy cattle.

17.
Front Genet ; 15: 1405478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045327

RESUMEN

The use of wide-ranging dairy herd improvement (DHI) measurements has resulted in the investigation of somatic cell count (SCC) and the identification of many genes associated with mastitis resistance. In this study, blood samples of Xinjiang brown cattle with different SCCs were collected, and genome-wide DNA methylation was analyzed by MeDIP-seq. The results showed that peaks were mostly in intergenic regions, followed by introns, exons, and promoters. A total of 1,934 differentially expressed genes (DEGs) associated with mastitis resistance in Xinjiang brown cattle were identified. The enrichment of differentially methylated CpG islands of the TRAPPC9 and CD4 genes was analyzed by bisulfate genome sequencing. The methylation rate of differentially methylated CpGs was higher in the TRAPPC9 gene of cattle with clinical mastitis (mastitis group) compared with healthy cattle (control group), while methylation of differentially methylated CpGs was significantly lower in CD4 of the mastitis group compared with the control group. RT-qRCR analysis showed that the mastitis group had significantly reduced expression of CD4 and TRAPPC9 genes compared to the control group (p < 0.05). Furthermore, Mac-T cells treated with lipopolysaccharide and lipoteichoic acid showed significant downregulation of the TRAPPC9 gene in the mastitis group compared with the control group. The identified epigenetic biomarkers provide theoretical reference for treating cow mastitis, breeding management, and the genetic improvement of mastitis resistance in Xinjiang brown cattle.

18.
Genes (Basel) ; 15(3)2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540412

RESUMEN

DNA methylation (DNAm) is associated with the reproductive system. However, the genetic mechanism through which DNAm regulates gene expression and thus affects litter size in goats is unclear. Therefore, in the present work, genome-wide DNAm profiles of HP and LP Jining Grey goat ovary tissues were comprehensively analyzed via WGBS, and RNA-Seq data were combined to identify candidate genes associated with litter size traits in the Jining Grey goat. Finally, BSP and RT-qPCR were used to verify the sequencing results of the key genes. Notably, the DNMT genes were downregulated at the expression level in the HP group. Both groups exhibited comparable levels of methylation. A total of 976 differentially methylated regions (DMRs) (973 DMRs for CG and 3 DMRs for CHG) and 310 differentially methylated genes (DMGs) were identified in this study. Through integration of WGBS and RNA-Seq data, we identified 59 differentially methylated and differentially expressed genes (DEGs) and ultimately screened 8 key DMGs (9 DMRS) associated with litter size traits in Jining Grey goats (SERPINB2: chr24_62258801_62259000, NDRG4: chr18_27599201_27599400, CFAP43: chr26_27046601_27046800, LRP1B. chr2_79720201_79720400, EPHA6: chr1_40088601_40088800, TTC29: chr17_59385801_59386000, PDE11A: chr2_117418601_117418800 and PGF: chr10_ 16913801_16914000 and chr10_16916401_16916600). In summary, our research comprehensively analyzed the genome-wide DNAm profiles of HP and LP Jining Grey goat ovary tissues. The data findings suggest that DNAm in goat ovaries may play an important role in determining litter size.


Asunto(s)
Metilación de ADN , Cabras , Embarazo , Animales , Femenino , Tamaño de la Camada/genética , Cabras/genética , Metilación de ADN/genética , Genoma , Ovario/metabolismo
19.
Genes (Basel) ; 15(4)2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38674399

RESUMEN

Xinjiang brown cattle are highly resistant to disease and tolerant of roughage feeding. The identification of genes regulating mastitis resistance in Xinjiang brown cattle is a novel means of genetic improvement. In this study, the blood levels of IL-1ß, IL-6, IL-10, TNF-α, and TGF-ß in Xinjiang brown cattle with high and low somatic cell counts (SCCs) were investigated, showing that cytokine levels were higher in cattle with high SCCs. The peripheral blood transcriptomic profiles of healthy and mastitis-affected cattle were constructed by RNA-seq. Differential expression analysis identified 1632 differentially expressed mRNAs (DE-mRNAs), 1757 differentially expressed lncRNAs (DE-lncRNAs), and 23 differentially expressed circRNAs (DE-circRNAs), which were found to be enriched in key pathways such as PI3K/Akt, focal adhesion, and ECM-receptor interactions. Finally, ceRNA interaction networks were constructed using the differentially expressed genes and ceRNAs. It was found that keynote genes or mRNAs were also enriched in pathways such as PI3K-Akt, cholinergic synapses, cell adhesion molecules, ion binding, cytokine receptor activity, and peptide receptor activity, suggesting that the key genes and ncRNAs in the network may play an important role in the regulation of bovine mastitis.


Asunto(s)
Redes Reguladoras de Genes , Mastitis Bovina , Transcriptoma , Animales , Bovinos/genética , Mastitis Bovina/genética , Femenino , ARN Largo no Codificante/genética , Resistencia a la Enfermedad/genética , Citocinas/genética , Citocinas/metabolismo , ARN Mensajero/genética , Perfilación de la Expresión Génica/métodos
20.
Animals (Basel) ; 14(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38929373

RESUMEN

In this study, six different animal models were fitted, and the constrained maximum likelihood method was used to assess the genetic parameters and genetic trends of early growth traits in Luzhong mutton sheep. The experimental data of this study included the newborn weight (BWT, N = 2464), weaning weight (WWT, N = 2923), weight at 6 months of age (6WT, N = 2428), average daily weight gain from birth to weaning (ADG1, N = 2424), and average daily weight gain from weaning to 6 months of age (ADG2, N = 1836) in Luzhong mutton sheep (2015~2019). The best model for the genetic parameters of the five traits in Luzhong mutton sheep was identified as Model 4 using the Akaike information criterion (AIC) and likelihood ratio test (LRT) methods, in which the estimated values of direct heritability for the BWT, WWT, 6WT, ADG1, and ADG2 were 0.156 ± 0.057, 0.547 ± 0.031, 0.653 ± 0.031, 0.531 ± 0.035, and 0.052 ± 0.046, respectively, and the values for maternal heritability were 0.201 ± 0.100, 0.280 ± 0.047, 0.197 ± 0.053, 0.275 ± 0.052, and 0.081 ± 0.092, respectively. The genetic correlation between the ADG2 and WWT was negative, and the genetic and phenotypic correlations among the remaining traits were positive. In this study, maternal effects had a more significant influence on early growth traits in Luzhong mutton sheep. In conclusion, to effectively improve the accuracy of genetic parameter estimation, maternal effects must be fully considered to ensure more accurate and better breeding planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA