Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Helicobacter ; 29(2): e13075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38627919

RESUMEN

BACKGROUND: The current standard treatment for Helicobacter pylori infection, which involves a combination of two broad-spectrum antibiotics, faces significant challenges due to its detrimental impact on the gut microbiota and the emergence of drug-resistant strains. This underscores the urgent requirement for the development of novel anti-H. pylori drugs. Zoliflodacin, a novel bacterial gyrase inhibitor, is currently undergoing global phase III clinical trials for treating uncomplicated Neisseria gonorrhoeae. However, there is no available data regarding its activity against H. pylori. MATERIALS AND METHODS: We evaluated the in vitro activity of zoliflodacin against H. pylori clinical isolates (n = 123) with diverse multidrug resistance. We performed DNA gyrase supercoiling and microscale thermophoresis assays to identify the target of zoliflodacin in H. pylori. We analyzed 2262 H. pylori whole genome sequences to identify Asp424Asn and Lys445Asn mutations in DNA gyrase subunit B (GyrB) that are associated with zoliflodacin resistance. RESULTS: Zoliflodacin exhibits potent activity against all tested isolates, with minimal inhibitory concentration (MIC) values ranging from 0.008 to 1 µg/mL (MIC50: 0.125 µg/mL; MIC90: 0.25 µg/mL). Importantly, there was no evidence of cross-resistance to any of the four first-line antibiotics commonly used against H. pylori. We identified GyrB as the primary target of zoliflodacin, with Asp424Asn or Lys445Asn substitutions conferring resistance. Screening of 2262 available H. pylori genomes for the two mutations revealed only one clinical isolate carrying Asp424Asn substitution. CONCLUSION: These findings support the potential of zoliflodacin as a promising candidate for H. pylori treatment, warranting further development and evaluation.


Asunto(s)
Barbitúricos , Infecciones por Helicobacter , Helicobacter pylori , Isoxazoles , Morfolinas , Oxazolidinonas , Compuestos de Espiro , Humanos , Antibacterianos/farmacología , Girasa de ADN/genética , Farmacorresistencia Bacteriana , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Pruebas de Sensibilidad Microbiana , Ensayos Clínicos Fase III como Asunto
2.
Clin Exp Pharmacol Physiol ; 51(6): e13855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636942

RESUMEN

Cardiac microvascular endothelial cells (CMECs) are important cells surrounding the cardiomyocytes in the heart that maintain microenvironment homeostasis. Salvianic acid A sodium (SAAS) has been reported to prevent myocardial infarction (MI) injury. However, the role of SAAS on CMEC proliferation remains unclear. CEMCs exposed to oxygen glucose deprivation (OGD) were used to explore the angiogenic abilities of SAAS. In vivo, C57BL/6 mice were divided into three groups: sham, MI and SAAS + MI groups. Compared to OGD group, SAAS led to a reduction in the apoptotic rate and an increase of the proliferation in vitro. Additionally, SAAS increased the protein levels of Bcl2, HIF-1α and vascular endothelial growth factor (VEGF) with the reduction of Bax. In terms of the specific mechanisms, SAAS might inhibit HIF-1α ubiquitination and enhance the HIF-1α/VEGF signalling pathway to increase CMEC proliferation. Furthermore, SAAS increased the density of vessels, inhibited myocardial fibrosis and improved cardiac dysfunction in vivo. The present study has revealed that SAAS could potentially be used as an active substance to facilitate CMEC proliferation post-MI.


Asunto(s)
Lactatos , Infarto del Miocardio , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Células Endoteliales/metabolismo , Sodio/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proliferación Celular , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
3.
J Environ Sci (China) ; 140: 2-11, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331500

RESUMEN

In2O3 has been found a promising application in CO2 hydrogenation to methanol, which is beneficial to the utilization of CO2. The oxygen vacancy (Ov) site is identified as the catalytic active center of this reaction. However, there remains a great challenge to understand the relations between the state of oxygen species in In2O3 and the catalytic performance for CO2 hydrogenation to methanol. In the present work, we compare the properties of multiple In2O3 and Ir-promoted In2O3 (Ir-In2O3) catalysts with different Ir loadings and after being pretreated under different reduction temperatures. The CO2 conversion rate of Ir-In2O3 is more promoted than that of pure In2O3. With only a small amount of Ir loading, the highly dispersed Ir species on In2O3 increase the concentration of Ov sites and enhance the activity. By finely tuning the catalyst structure, Ir-In2O3 with an Ir loading of 0.16 wt.% and pre-reduction treatment under 300°C exhibits the highest methanol yield of 146 mgCH3OH/(gcat·hr). Characterizations of Raman, electron paramagnetic resonance, X-ray photoelectron spectroscopy, CO2-temperature programmed desorption and CO2-pulse adsorption for the catalysts confirm that more Ov sites can be generated under higher reduction temperature, which will induce a facile CO2 adsorption and desorption cycle. Higher performance for methanol production requires an adequate dynamic balance among the surface oxygen atoms and vacancies, which guides us to find more suitable conditions for catalyst pretreatment and reaction.


Asunto(s)
Dióxido de Carbono , Metanol , Hidrogenación , Catálisis , Oxígeno
4.
Angew Chem Int Ed Engl ; : e202401707, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700007

RESUMEN

The pursuit of high efficacy C-C coupling during the electrochemical CO2 reduction reaction remains a tremendous challenge owing to the high energy barrier of CO2 activation and insufficient coverage of the desired intermediates on catalytic sites. Inspired by the concept of capture-coupled CO2 activation, we fabricated quinone-grafted carbon nanofibers via an in situ oxidative carbonylation strategy. The quinone functionality of carbon nanofibers promotes the capture of CO2 followed by activation. At a current density of 400 mA cm-2, the Faradaic efficiency of ethylene reached 62.9 %, and a partial current density of 295 mA cm-2 was achieved on the quinone-rich carbon nanofibers. The results of in situ spectroscopy and theoretical calculations indicated that the remarkable selectivity enhancement in ethylene originates from the quinone structure, rather than the electronic properties of Cu particles. The interaction of quinone with CO2 increases the local *CO coverage and simultaneously hinders the co-adsorption of *H on Cu sites, which greatly reduces the energy barrier for C-C coupling and restrains subsequent *CO protonation. The modulation strategy involving specific oxygenated structure, as an independent degree of freedom, guides the design of functionalized carbon materials for tailoring the selectivity of desired products during the CO2 capture and reduction.

5.
J Am Chem Soc ; 145(13): 7242-7251, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36877826

RESUMEN

Sn-based materials have been demonstrated as promising catalysts for the selective electrochemical CO2 reduction reaction (CO2RR). However, the detailed structures of catalytic intermediates and the key surface species remain to be identified. In this work, a series of single-Sn-atom catalysts with well-defined structures is developed as model systems to explore their electrochemical reactivity toward CO2RR. The selectivity and activity of CO2 reduction to formic acid on Sn-single-atom sites are shown to be correlated with Sn(IV)-N4 moieties axially coordinated with oxygen (O-Sn-N4), reaching an optimal HCOOH Faradaic efficiency of 89.4% with a partial current density (jHCOOH) of 74.8 mA·cm-2 at -1.0 V vs reversible hydrogen electrode (RHE). Employing a combination of operando X-ray absorption spectroscopy, attenuated total reflectance surface-enhanced infrared absorption spectroscopy, Raman spectroscopy, and 119Sn Mössbauer spectroscopy, surface-bound bidentate tin carbonate species are captured during CO2RR. Moreover, the electronic and coordination structures of the single-Sn-atom species under reaction conditions are determined. Density functional theory (DFT) calculations further support the preferred formation of Sn-O-CO2 species over the O-Sn-N4 sites, which effectively modulates the adsorption configuration of the reactive intermediates and lowers the energy barrier for the hydrogenation of *OCHO species, as compared to the preferred formation of *COOH species over the Sn-N4 sites, thereby greatly facilitating CO2-to-HCOOH conversion.

6.
J Am Chem Soc ; 145(28): 15600-15610, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37418344

RESUMEN

Single-atom catalysts with a well-defined metal center open unique opportunities for exploring the catalytically active site and reaction mechanism of chemical reactions. However, understanding of the electronic and structural dynamics of single-atom catalytic centers under reaction conditions is still limited due to the challenge of combining operando techniques that are sensitive to such sites and model single-atom systems. Herein, supported by state-of-the-art operando techniques, we provide an in-depth study of the dynamic structural and electronic evolution during the electrochemical CO2 reduction reaction (CO2RR) of a model catalyst comprising iron only as a high-spin (HS) Fe(III)N4 center in its resting state. Operando 57Fe Mössbauer and X-ray absorption spectroscopies clearly evidence the change from a HS Fe(III)N4 to a HS Fe(II)N4 center with decreasing potential, CO2- or Ar-saturation of the electrolyte, leading to different adsorbates and stability of the HS Fe(II)N4 center. With operando Raman spectroscopy and cyclic voltammetry, we identify that the phthalocyanine (Pc) ligand coordinating the iron cation center undergoes a redox process from Fe(II)Pc to Fe(II)Pc-. Altogether, the HS Fe(II)Pc- species is identified as the catalytic intermediate for CO2RR. Furthermore, theoretical calculations reveal that the electroreduction of the Pc ligand modifies the d-band center of the in situ generated HS Fe(II)Pc- species, resulting in an optimal binding strength to CO2 and thus boosting the catalytic performance of CO2RR. This work provides both experimental and theoretical evidence toward the electronic structural and dynamics of reactive sites in single-Fe-atom materials and shall guide the design of novel efficient catalysts for CO2RR.

7.
J Am Chem Soc ; 145(37): 20683-20691, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683296

RESUMEN

Metastable state is the most active catalyst state that dictates the overall catalytic performance and rules of catalytic behaviors; however, identification and stabilization of the metastable state of catalyst are still highly challenging due to the continuous evolution of catalytic sites during the reaction process. In this work, operando 119Sn Mössbauer measurements and theoretical simulations were performed to track and identify the metastable state of single-atom Sn in copper oxide (Sn1-CuO) for highly selective CO2 electroreduction to CO. A maximum CO Faradaic efficiency of around 98% at -0.8 V (vs. RHE) over Sn1-CuO was achieved at an optimized Sn loading of 5.25 wt. %. Operando Mössbauer spectroscopy clearly identified the dynamic evolution of atomically dispersed Sn4+ sites in the CuO matrix that enabled the in situ transformation of Sn4+-O4-Cu2+ to a metastable state Sn4+-O3-Cu+ under CO2RR conditions. In combination with quasi in situ X-ray photoelectron spectroscopy, operando Raman and attenuated total reflectance surface enhanced infrared absorption spectroscopies, the promoted desorption of *CO over the Sn4+-O3 stabilized adjacent Cu+ site was evidenced. In addition, density functional theory calculations further verified that the in situ construction of Sn4+-O3-Cu+ as the true catalytic site altered the reaction path via modifying the adsorption configuration of the *COOH intermediate, which effectively reduced the reaction free energy required for the hydrogenation of CO2 and the desorption of the *CO, thereby greatly facilitating the CO2-to-CO conversion. This work provides a fundamental insight into the role of single Sn atoms on in situ tuning the electronic structure of Cu-based catalysts, which may pave the way for the development of efficient catalysts for high-selectivity CO2 electroreduction.

8.
J Am Chem Soc ; 145(21): 11829-11836, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199388

RESUMEN

In the electrochemical CO2 reduction reaction (CO2RR), CO2 activation is always the first step, followed by the subsequent hydrogenation. The catalytic performance of CO2RR is intrinsically restricted by the competition between molecular CO2 activation and CO2 reduction product release. Here, we design a heteronuclear Fe1-Mo1 dual-metal catalytic pair on ordered porous carbon that features a high catalytic performance for driving electrochemical CO2 reduction to CO. Combining real-time near-ambient pressure X-ray photoelectron spectroscopy, operando 57Fe Mössbauer spectroscopy, and in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements with density functional theory calculations, chemical adsorption of CO2 is observed on the Fe1-Mo1 catalytic pair through a bridge configuration, which prompts the bending of the CO2 molecule for CO2 activation and then facilitates the subsequent hydrogeneration reaction. More importantly, the dynamic adsorption configuration transition from the bridge configuration of CO2 on Fe1-Mo1 to the linear configuration of CO on the Fe1 center results in breaking the scaling relationship in CO2RR, simultaneously promoting the CO2 activation and the CO release.

9.
Angew Chem Int Ed Engl ; 62(37): e202309377, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503791

RESUMEN

Selective synthesis of specific value-added aromatics from CO2 hydrogenation is of paramount interest for mitigating energy and climate problems caused by CO2 emission. Herein, we report a highly active composite catalyst of ZnZrO and HZSM-5 (ZZO/Z5-SG) for xylene synthesis from CO2 hydrogenation via a coupling reaction in the presence of toluene, achieving a xylene selectivity of 86.5 % with CO2 conversion of 10.5 %. A remarkably high space time yield of xylene could reach 215 mg gcat -1 h-1 , surpassing most reported catalysts for CO2 hydrogenation. The enhanced performance of ZZO/Z5-SG could be due to high dispersion and abundant oxygen vacancies of the ZZO component for CO2 adsorption, more feasible hydrogen activation and transfer due to the close interaction between the two components, and enhanced stability of the formate intermediate. The consumption of methoxy and methanol from the deep hydrogenation of formate by introduced toluene also propels an oriented conversion of CO2 .

10.
Angew Chem Int Ed Engl ; 62(4): e202214273, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36428218

RESUMEN

Developing mixed-anion semiconductors for solar fuel production has inspired extensive interest, but the nitrohalide-based photocatalyst is still in shortage. Here we report a layered nitro-halide ß-ZrNBr with a narrow band gap of ca. 2.3 eV and low defect density to exhibit multifunctionalities for photocatalytic water reduction, water oxidation and CO2 reduction under visible-light irradiation. As confirmed by the results of electron paramagnetic resonance (EPR) and density functional theory (DFT) calculations, the formation of anion vacancies in the nitro-halide photocatalyst was inhibited due to its relatively high formation energy. Furthermore, performance of ß-ZrNBr can be effectively promoted by a simple exfoliation into nanosheets to shorten the carrier transfer distance as well as to promote charge separation. Our work extends the territory of functional photocatalysts into the nitro-halide, which opens a new avenue for fabricating efficient artificial photosynthesis.

11.
Angew Chem Int Ed Engl ; 62(10): e202211174, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562773

RESUMEN

Electrochemically reducing CO2 to valuable fuels or feedstocks is recognized as a promising strategy to simultaneously tackle the crises of fossil fuel shortage and carbon emission. Sn-based catalysts have been widely studied for electrochemical CO2 reduction reaction (CO2 RR) to make formic acid/formate, which unfortunately still suffer from low activity, selectivity and stability. In this work, halogen (F, Cl, Br or I) was introduced into the Sn catalyst by a facile hydrolysis method. The presence of halogen was confirmed by a collection of ex situ and in situ characterizations, which rendered a more positive valence state of Sn in halogen-incorporated Sn catalyst as compared to unmodified Sn under cathodic potentials in CO2 RR and therefore tuned the adsorption strength of the key intermediate (*OCHO) toward formate formation. As a result, the halogen-incorporated Sn catalyst exhibited greatly enhanced catalytic performance in electrochemical CO2 RR to produce formate.

12.
Antimicrob Agents Chemother ; 66(7): e0007322, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35758720

RESUMEN

Metronidazole (Met) is the first choice for treating Helicobacter pylori (Hp). However, Hp is easy to resistant, making Met unable to be widely used. How to overcome Hp's Met resistance is still an issue. In this study, Met was used as the primary raw material with linolenic acid to prepare a novel compound-linolenic acid-metronidazole (Lla-Met). The MIC, minimum bactericidal concentration (MBC), colonization amount of Hp in gastric mucosa, etc., were evaluated, respectively. Lla-Met was successfully prepared by the detection of nuclear magnetic resonance, etc., and its MIC and MBC to Hp were 2~4 µg/mL, 8~16 µg/mL. Moreover, in vivo experiments, Lla-Met significantly reduced the colonization of drug-resistant Hp in gastric mucosa. In the toxicity test, Lla-Met inhibited rate to GES-1 and BGC823 cells were 15% at 128 µg/mL; the mice were administered 10 times treatment Lla-Met treatment (240 mg/kg), have no difference significant injuries were found in their stomach, liver, spleen, kidney, and weight. In addition, Hp G27 continued for 18 days in vitro with sub-Lla-Met concentration, G27 did not show drug resistance to Lla-Met; Lla-Met did not exert an effect on non-Hp species with 128 µg/mL; Compared with a neutral environment, when the acid concentration is 3.0, Lla-Met is not decomposed and has better stability. Conclusion: Lla-Met, a newly prepared compound, has relatively well antibacterial of Met-resistant and sensitive Hp, with a capability of overcoming the metronidazole resistance of Hp.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Claritromicina/farmacología , Resistencia a Medicamentos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Metronidazol/farmacología , Metronidazol/uso terapéutico , Ratones , Ácido alfa-Linolénico/farmacología
13.
Artículo en Inglés | MEDLINE | ID: mdl-33318002

RESUMEN

Helicobacter pylori is a major global pathogen and has been implicated in gastritis, peptic ulcer, and gastric carcinoma. The efficacy of the extensive therapy of H. pylori infection with antibiotics is compromised by the development of drug resistance and toxicity toward human gut microbiota, which urgently demands novel and selective antibacterial strategies. The present study was mainly performed to assess the in vitro and in vivo effects of a natural herbal compound, dihydrotanshinone I (DHT), against standard and clinical H. pylori strains. DHT demonstrated effective antibacterial activity against H. pyloriin vitro (MIC50/90, 0.25/0.5 µg/ml), with no development of resistance during continuous serial passaging. Time-kill curves showed strong time-dependent bactericidal activity for DHT. Also, DHT eliminated preformed biofilms and killed biofilm-encased H. pylori cells more efficiently than the conventional antibiotic metronidazole. In mouse models of multidrug-resistant H. pylori infection, dual therapy with DHT and omeprazole showed in vivo killing efficacy superior to that of the standard triple-therapy approach. Moreover, DHT treatment induces negligible toxicity against normal tissues and exhibits a relatively good safety index. These results suggest that DHT could be suitable for use as an anti-H. pylori agent in combination with a proton pump inhibitor to eradicate multidrug-resistant H. pylori.


Asunto(s)
Antiulcerosos , Infecciones por Helicobacter , Helicobacter pylori , Preparaciones Farmacéuticas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Claritromicina/uso terapéutico , Quimioterapia Combinada , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Metronidazol/farmacología , Metronidazol/uso terapéutico , Omeprazol
14.
Chem Soc Rev ; 49(5): 1385-1413, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32067007

RESUMEN

The ever-increasing amount of anthropogenic carbon dioxide (CO2) emissions has resulted in great environmental impacts. The selective hydrogenation of CO2 to methanol, the first target in the liquid sunshine vision, not only effectively mitigates the CO2 emissions, but also produces value-added chemicals and fuels. This critical review provides a comprehensive view of the significant advances in heterogeneous catalysis for methanol synthesis through direct hydrogenation of CO2. The challenges in thermodynamics are addressed first. Then the progress in conventional Cu-based catalysts is discussed in detail, with an emphasis on the structural, chemical, and electronic promotions of supports and promoters, the preparation methods and precursors of Cu-based catalysts, as well as the proposed models for active sites. We also provide an overview of the progress in noble metal-based catalysts, bimetallic catalysts including alloys and intermetallic compounds, as well as hybrid oxides and other novel catalytic systems. The developments in mechanistic aspects, reaction conditions and optimization, as well as reactor designs and innovations are also included. The advances in industrial applications for methanol synthesis are further highlighted. Finally, a summary and outlook are provided.

15.
J Am Chem Soc ; 142(45): 19001-19005, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33108198

RESUMEN

Recently, CO2 hydrogenation for the controlled growth of the carbon chain to produce high-value C2 or C2+ products has attracted great interest, where achieving high selectivity for a specific product remains a challenge, especially for ethanol. Herein, we have designed a bifunctional Ir1-In2O3 single-atom catalyst, integrating two active catalytic centers by anchoring the monatomic Ir onto the In2O3 carrier. This Ir1-In2O3 single-atom catalyst is efficient for the hydrogenation of CO2 in liquid, yielding a high selectivity for ethanol (>99%) with an excellent initial turnover frequency (481 h-1). Characterization shows that the isolated Ir atom couples with the adjacent oxygen vacancy forming a Lewis acid-base pair, which activates the CO2 and forms the intermediate species of carbonyl (CO*) adsorbed on the Ir atom. Coupling this CO* with the methoxide adsorbed on the In2O3 forms a C-C bond. The strategy of this effective bifunctional single-atom catalyst by synergistically utilizing the distinct catalytic roles of the single-atom site and the substrates provides a new avenue in catalyst design for complex catalysis.

16.
Acc Chem Res ; 52(3): 656-664, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30512920

RESUMEN

Simply yet powerfully, single-atom catalysts (SACs) with atomically dispersed metal active centers on supports have received a growing interest in a wide range of catalytic reactions. As a specific example, SACs have exhibited distinctive performances in CO2 chemical conversions. The unique structures of SACs are appealing for adsorptive activation of CO2 molecules, transfer of intermediates from support to active metal sites, and production of desirable products in CO2 conversion. In this Account, we have exemplified our recent endeavors in the development of SACs toward CO2 conversions in thermal catalysis and electrocatalysis. In terms of the support not only stabilizing but also working collaboratively with the single active sites, the proper choice of support is of great importance for its stability, activity, and selectivity in single-atom catalysis. Three distinctive strategies for SAC architectures-lattice-matched oxide supported, heteroatom-doped carbon anchored, and mimetic ligand chelated-are intensively discussed from the perspective of support design for SACs in different reaction environments. To achieve a high-temperature thermal reduction of CO2 to CO, TiO2 (rutile), lattice-matched to the IrO2 active site, was chosen as a support to realize the thermal stability of Ir1/TiO2 SAC, and it shows great capability toward CO2 conversion and excellent selectivity to CO due to the effective block of the over-reduction of CO2 to methane over single Ir active sites. In the electrochemical reduction of CO2 at low temperature, sulfur co-doped N-graphene was developed to achieve unique d9-Ni single atoms on the conductive graphene support, by which not only were the atomic Ni active sites trapped into the matrix of graphene for its stabilization, but also the modulation of electronic configuration of mononuclear Ni centers promoted the CO2 activation through facile electron transfer with an improved electroreduction activity. Inspired by the Ir mononuclear homogeneous catalysts in CO2 hydrogenation to formate, porous organic polymers (POPs) functionalized with a reticular aminopyridine group were purposely fabricated to mimic the homogeneous ligand environment for chelating the Ir single-atom active center, and this quasi-homogeneous Ir1/POP catalyst manifests high efficiency for hydrogenation of CO2 to formate under mild conditions in the liquid phase. Such SACs are of paramount importance for the transformation of CO2, with their coordination environment helping in the activation of CO2. Since the energy barrier for the dissociation of the second C-O bond of CO2 on single-atom sites is very high, these catalysts can give high selectivities toward CO or formate products. Thanks to SACs, the conversion of CO2 has become much easier in various chemical environments.

17.
Angew Chem Int Ed Engl ; 59(2): 798-803, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31657106

RESUMEN

Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2 RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2 RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single-atom catalyst (Ni SAC) with a uniform structure and well-defined Ni-N4 moiety on a conductive carbon support with which to explore the electrochemical CO2 RR. Operando X-ray absorption near-edge structure spectroscopy, Raman spectroscopy, and near-ambient X-ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2 RR. Furthermore, through combination with a kinetics study, the rate-determining step of the CO2 RR was determined to be *CO2 - +H+ →*COOH. This study tackles the four challenges faced by the CO2 RR; namely, activity, selectivity, stability, and dynamics.

18.
J Am Chem Soc ; 141(7): 3014-3023, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30673269

RESUMEN

Oxygen electrochemistry plays a critical role in clean energy technologies such as fuel cells and electrolyzers, but the oxygen evolution reaction (OER) severely restricts the efficiency of these devices due to its slow kinetics. Here, we show that via incorporation of lithium ion into iridium oxide, the thus obtained amorphous iridium oxide (Li-IrO x) demonstrates outstanding water oxidation activity with an OER current density of 10 mA/cm2 at 270 mV overpotential for 10 h of continuous operation in acidic electrolyte. DFT calculations show that lithium incorporation into iridium oxide is able to lower the activation barrier for OER. X-ray absorption characterizations indicate that both amorphous Li-IrO x and rutile IrO2 own similar [IrO6] octahedron units but have different [IrO6] octahedron connection modes. Oxidation of iridium to higher oxidation states along with shrinkage in the Ir-O bond was observed by in situ X-ray absorption spectroscopy on amorphous Li-IrO x, but not on rutile IrO2 under OER operando conditions. The much more "flexible" disordered [IrO6] octahedrons with higher oxidation states in amorphous Li-IrO x as compared to the periodically interconnected "rigid" [IrO6] octahedrons in crystalline IrO2 are able to act as more electrophilic centers and thus effectively promote the fast turnover of water oxidation.

19.
Artículo en Inglés | MEDLINE | ID: mdl-30936098

RESUMEN

Helicobacter pylori is a major global pathogen, and its infection represents a key factor in the etiology of various gastric diseases, including gastritis, peptic ulcers, and gastric carcinoma. The efficacy of current standard treatment for H. pylori infection including two broad-spectrum antibiotics is compromised by toxicity toward the gut microbiota and the development of drug resistance, which will likely only be resolved through novel and selective antibacterial strategies. Here, we synthesized a small molecule, zinc linolenate (ZnLla), and investigated its therapeutic potential for the treatment of H. pylori infection. ZnLla showed effective antibacterial activity against standard strains and drug-resistant clinical isolates of H. pyloriin vitro with no development of resistance during continuous serial passaging. The mechanisms of ZnLla action against H. pylori involved the disruption of bacterial cell membranes and generation of reactive oxygen species. In mouse models of multidrug-resistant H. pylori infection, ZnLla showed in vivo killing efficacy comparable and superior to the triple therapy approach when use as a monotherapy and a combined therapy with omeprazole, respectively. Moreover, ZnLla treatment induces negligible toxicity against normal tissues and causes minimal effects on both the diversity and composition of the murine gut microbiota. Thus, the high degree of selectivity of ZnLla for H. pylori provides an attractive candidate for novel targeted anti-H. pylori treatment.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Gastropatías/tratamiento farmacológico , Ácido alfa-Linolénico/farmacología , Animales , Farmacorresistencia Bacteriana , Femenino , Infecciones por Helicobacter/microbiología , Humanos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Omeprazol/farmacología , Especificidad de la Especie , Gastropatías/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA