Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 294(4): 1083-1088, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30563836

RESUMEN

Increased oxidative stress and abundance of reactive oxygen species (ROS) are positively correlated with a variety of pathophysiologies, including cardiovascular disease, type 2 diabetes, Alzheimer's disease, and neuroinflammation. In adipose biology, diabetic obesity is correlated with increased ROS in an age- and depot-specific manner and is mechanistically linked to mitochondrial dysfunction, endoplasmic reticulum (ER) stress, potentiated lipolysis, and insulin resistance. The cellular quality control systems that homeostatically regulate oxidative stress in the lean state are down-regulated in obesity as a consequence of inflammatory cytokine pressure leading to the accumulation of oxidized biomolecules. New findings have linked protein, DNA, and lipid oxidation at the biochemical level, and the structures and potential functions of protein adducts such as carbonylation that accumulate in stressed cells have been characterized. The sum total of such regulation and biochemical changes results in alteration of cellular metabolism and function in the obese state relative to the lean state and underlies metabolic disease progression. In this review, we discuss the molecular mechanisms and events underlying these processes and their implications for human health and disease.


Asunto(s)
Tejido Adiposo/metabolismo , Estrés Oxidativo , Carbonilación Proteica , Proteínas/metabolismo , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo
2.
JACC Basic Transl Sci ; 8(2): 174-185, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36908663

RESUMEN

Diabetes mellitus (DM) is a main risk factor for diastolic dysfunction (DD) and heart failure with preserved ejection fraction. High-fat diet (HFD) mice presented with diabetes mellitus, DD, higher cardiac interleukin (IL)-1ß levels, and proinflammatory cardiac macrophage accumulation. DD was significantly ameliorated by suppressing IL-1ß signaling or depleting macrophages. Mice with macrophages unable to adopt a proinflammatory phenotype were low in cardiac IL-1ß levels and were resistant to HFD-induced DD. IL-1ß enhanced mitochondrial reactive oxygen species (mitoROS) in cardiomyocytes, and scavenging mitoROS improved HFD-induced DD. In conclusion, macrophage-mediated inflammation contributed to HFD-associated DD through IL-1ß and mitoROS production.

3.
Diabetes ; 72(11): 1560-1573, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347719

RESUMEN

Besides the secretion of fatty acids, lipolytic stimulation of adipocytes results in the secretion of triglyceride-rich extracellular vesicles and some free proteins (e.g., fatty acid binding protein 4) that, in sum, affect adipose homeostasis as well as the development of metabolic disease. At the mechanistic level, lipolytic signals activate p53 in an adipose triglyceride lipase-dependent manner, and pharmacologic inhibition of p53 attenuates adipocyte-derived extracellular vesicle (AdEV) protein and FABP4 secretion. Mass spectrometry analyses of the lipolytic secretome identified proteins involved in glucose and fatty acid metabolism, translation, chaperone activities, and redox control. Consistent with a role for p53 in adipocyte protein secretion, activation of p53 by the MDM2 antagonist nutlin potentiated AdEV particles and non-AdEV protein secretion from cultured 3T3-L1 or OP9 adipocytes while the levels of FABP4 and AdEV proteins were significantly reduced in serum from p53-/- mice compared with wild-type controls. The genotoxin doxorubicin increased AdEV protein and FABP4 secretion in a p53-dependent manner and DNA repair-depleted ERCC1-/Δ-haploinsufficient mice expressed elevated p53 in adipose depots, along with significantly increased serum FABP4. In sum, these data suggest that lipolytic signals, and cellular stressors such as DNA damage, facilitate AdEV protein and FABP4 secretion by adipocytes in a p53-dependent manner.


Asunto(s)
Exosomas , Proteína p53 Supresora de Tumor , Animales , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Exosomas/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Lipólisis , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Endocrinology ; 163(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35136993

RESUMEN

Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1ß and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3). Pharmacologic inhibition of fatty acid synthase or stearoyl-coenzyme A desaturase inhibits, whereas exogenous addition of C16:1 or C18:1 but not their saturated acyl chain counterparts, activates SIRT1 and p53/STAT3 signaling and IL-1ß/IL-18 release. Expression of the p53 target gene ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)] required for assembly of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is downregulated in FABP4 null mice and macrophage cell lines leading to loss of procaspase 1 activation and pyroptosis. Concomitant with loss of ASC expression in FABP4-/- macrophages, inflammasome activation, gasdermin D processing, and functional activation of pyroptosis are all diminished in FABP4 null macrophages but can be rescued by silencing SIRT1 or exogenous expression of ASC. Taken together, these results reveal a novel lipid-regulated pathway linking to SIRT1-p53-ASC signaling and activation of inflammasome action and pyroptosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lípidos , Macrófagos/metabolismo , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Obesidad/metabolismo , Piroptosis , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA