Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 163(1): 108-22, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26388440

RESUMEN

Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low-complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Células HeLa , Humanos , Mitosis , Fenilalanina/metabolismo , Temperatura , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Xenopus
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555691

RESUMEN

High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Mitocondriales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , Transporte de Electrón , Enfermedades Mitocondriales/terapia , Enfermedades Mitocondriales/tratamiento farmacológico
3.
Proc Natl Acad Sci U S A ; 110(27): 11023-8, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776207

RESUMEN

ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 4 (ACAP4) is an ADP-ribosylation factor 6 (ARF6) GTPase-activating protein essential for EGF-elicited cell migration. However, how ACAP4 regulates membrane dynamics and curvature in response to EGF stimulation is unknown. Here, we show that phosphorylation of the N-terminal region of ACAP4, named the Bin, Amphiphysin, and RSV161/167 (BAR) domain, at Tyr34 is necessary for EGF-elicited membrane remodeling. Domain structure analysis demonstrates that the BAR domain regulates membrane curvature. EGF stimulation of cells causes phosphorylation of ACAP4 at Tyr34, which subsequently promotes ACAP4 homodimer curvature. The phospho-mimicking mutant of ACAP4 demonstrates lipid-binding activity and tubulation in vitro, and ARF6 enrichment at the membrane is associated with ruffles of EGF-stimulated cells. Expression of the phospho-mimicking ACAP4 mutant promotes ARF6-dependent cell migration. Thus, the results present a previously undefined mechanism by which EGF-elicited phosphorylation of the BAR domain controls ACAP4 molecular plasticity and plasma membrane dynamics during cell migration.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/fisiología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Aminoácidos , Línea Celular , Movimiento Celular/genética , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Fosforilación , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
4.
J Biol Chem ; 288(22): 15771-85, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23595990

RESUMEN

The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Cromosomas Humanos/metabolismo , Metafase/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Puntos de Control del Ciclo Celular/fisiología , Cromosomas Humanos/genética , Células HeLa , Humanos , Cinetocoros , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Multimerización de Proteína/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Factores de Transcripción p300-CBP/genética
5.
Nutrients ; 16(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931310

RESUMEN

BACKGROUND: Sarcopenia is an age-related condition characterized by progressive loss of muscle mass, strength, and function. The occurrence of sarcopenia has a huge impact on physical, psychological, and social health. Therefore, the prevention and treatment of sarcopenia is becoming an important public health issue. METHOD: 35 six-week-old male C57BL/6 mice were randomly divided into five groups, one of which served as a control group, while the rest of the groups were constructed as a model of sarcopenia by intraperitoneal injection of D-galactose. The intervention with lactoferrin, creatine, and their mixtures, respectively, was carried out through gavage for 8 weeks. Muscle function was assessed based on their endurance, hanging time, and grip strength. The muscle tissues were weighed to assess the changes in mass, and the muscle RNA was extracted for myogenic factor expression and transcriptome sequencing to speculate on the potential mechanism of action by GO and KEGG enrichment analysis. RESULT: The muscle mass (lean mass, GAS index), and muscle function (endurance, hanging time, and grip strength) decreased, and the size and structure of myofiber was smaller in the model group compared to the control group. The intervention with lactoferrin and creatine, either alone or combination, improved muscle mass and function, restored muscle tissue, and increased the expression of myogenic regulators. The combined group demonstrated the most significant improvement in these indexes. The RNA-seq results revealed enrichment in the longevity-regulated pathway, MAPK pathway, focal adhesion, and ECM-receptor interaction pathway in the intervention group. The intervention group may influence muscle function by affecting the proliferation, differentiation, senescence of skeletal muscle cell, and contraction of muscle fiber. The combined group also enriched the mTOR-S6K/4E-BPs signaling pathway, PI3K-Akt signaling pathway, and energy metabolism-related pathways, including Apelin signaling, insulin resistance pathway, and adipocytokine signaling pathway, which affect energy metabolism in muscle. CONCLUSIONS: Lactoferrin and creatine, either alone or in combination, were found to inhibit the progression of sarcopenia by influencing the number and cross-sectional area of muscle fibers and muscle protein synthesis. The combined intervention appears to exert a more significant effect on energy metabolism.


Asunto(s)
Creatina , Modelos Animales de Enfermedad , Lactoferrina , Ratones Endogámicos C57BL , Músculo Esquelético , Sarcopenia , Animales , Lactoferrina/farmacología , Masculino , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Creatina/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratones , Fuerza Muscular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
J Biol Chem ; 287(47): 39380-90, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23035123

RESUMEN

Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. Our recent study shows that mitotic motor CENP-E cooperates with SKAP to orchestrate an accurate chromosome movement in mitosis. However, it remains elusive how kinetochore core microtubule binding activity KMN (KNL1-MIS12-NDC80) regulates microtubule plus-end dynamics. Here, we identify a novel interaction between MIS13 and SKAP that orchestrates accurate interaction between kinetochore and dynamic spindle microtubules. SKAP physically interacts with MIS13 and specifies kinetochore localization of SKAP. Suppression of MIS13 by small interfering RNA abrogates the kinetochore localization of SKAP. Total internal reflection fluorescence microscopic assays demonstrate that SKAP exhibits an EB1-dependent, microtubule plus-end loading and tracking in vitro. Importantly, SKAP is essential for kinetochore oscillations and dynamics of microtubule plus-ends during live cell mitosis. Based on those findings, we reason that SKAP constitutes a dynamic link between spindle microtubule plus-ends and mitotic chromosomes to achieve faithful cell division.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Complejos Multiproteicos/genética , Huso Acromático/genética
7.
J Biol Chem ; 287(2): 1500-9, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22110139

RESUMEN

Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochore. Although previous studies show that the mitotic kinesin CENP-E forms a link between attachment of the spindle microtubule to the kinetochore and the mitotic checkpoint signaling cascade, the molecular mechanism underlying dynamic kinetochore-microtubule interactions in mammalian cells remains elusive. Here, we identify a novel interaction between CENP-E and SKAP that functions synergistically in governing dynamic kinetochore-microtubule interactions. SKAP binds to the C-terminal tail of CENP-E in vitro and is essential for an accurate kinetochore-microtubule attachment in vivo. Immunoelectron microscopic analysis indicates that SKAP is a constituent of the kinetochore corona fibers of mammalian centromeres. Depletion of SKAP or CENP-E by RNA interference results in a dramatic reduction of inter-kinetochore tension, which causes chromosome mis-segregation with a prolonged delay in achieving metaphase alignment. Importantly, SKAP binds to microtubules in vitro, and this interaction is synergized by CENP-E. Based on these findings, we propose that SKAP cooperates with CENP-E to orchestrate dynamic kinetochore-microtubule interaction for faithful chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Humanos/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos/genética , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo
8.
J Biol Chem ; 286(2): 1627-38, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21056971

RESUMEN

Mitosis is an orchestration of dynamic interaction between chromosomes and spindle microtubules by which genomic materials are equally distributed into two daughter cells. Previous studies showed that CENP-U is a constitutive centromere component essential for proper chromosome segregation. However, the precise molecular mechanism has remained elusive. Here, we identified CENP-U as a novel interacting partner of Hec1, an evolutionarily conserved kinetochore core component essential for chromosome plasticity. Suppression of CENP-U by shRNA resulted in mitotic defects with an impaired kinetochore-microtubule attachment. Interestingly, CENP-U not only binds microtubules directly but also displays a cooperative microtubule binding activity with Hec1 in vitro. Furthermore, we showed that CENP-U is a substrate of Aurora-B. Importantly, phosphorylation of CENP-U leads to reduced kinetochore-microtubule interaction, which contributes to the error-correcting function of Aurora-B. Taken together, our results indicate that CENP-U is a novel microtubule binding protein and plays an important role in kinetochore-microtubule attachment through its interaction with Hec1.


Asunto(s)
Segregación Cromosómica/fisiología , Cinetocoros/fisiología , Microtúbulos/fisiología , Proteínas Nucleares/fisiología , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Células HeLa , Histonas , Humanos , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo
9.
J Biol Chem ; 286(4): 3033-46, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21078677

RESUMEN

During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Humanos/metabolismo , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromosomas Humanos/genética , Inestabilidad Genómica , Células HeLa , Humanos , Cinesinas/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Huso Acromático/genética , Quinasa Tipo Polo 1
10.
J Biol Chem ; 285(24): 18769-80, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20360010

RESUMEN

The ezrin-radixin-moesin proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to the regulated HCl secretion. Our recent proteomic study revealed a protein complex of ezrin-ACAP4-ARF6 essential for volatile membrane remodeling (Fang, Z., Miao, Y., Ding, X., Deng, H., Liu, S., Wang, F., Zhou, R., Watson, C., Fu, C., Hu, Q., Lillard, J. W., Jr., Powell, M., Chen, Y., Forte, J. G., and Yao, X. (2006) Mol. Cell Proteomics 5, 1437-1449). However, knowledge of whether ACAP4 physically interacts with ezrin and how their interaction is integrated into membrane-cytoskeletal remodeling has remained elusive. Here we provide the first evidence that ezrin interacts with ACAP4 in a protein kinase A-mediated phosphorylation-dependent manner through the N-terminal 400 amino acids of ACAP4. ACAP4 locates in the cytoplasmic membrane in resting parietal cells but translocates to the apical plasma membrane upon histamine stimulation. ACAP4 was precipitated with ezrin from secreting but not resting parietal cell lysates, suggesting a phospho-regulated interaction. Indeed, this interaction is abolished by phosphatase treatment and validated by an in vitro reconstitution assay using phospho-mimicking ezrin(S66D). Importantly, ezrin specifies the apical distribution of ACAP4 in secreting parietal cells because either suppression of ezrin or overexpression of non-phosphorylatable ezrin prevents the apical localization of ACAP4. In addition, overexpressing GTPase-activating protein-deficient ACAP4 results in an inhibition of apical membrane-cytoskeletal remodeling and gastric acid secretion. Taken together, these results define a novel molecular mechanism linking ACAP4-ezrin interaction to polarized epithelial secretion.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/fisiología , Histamina/química , Células Parietales Gástricas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Aminopirina/química , Animales , Toxinas Bacterianas/química , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Fosforilación , ATPasas de Translocación de Protón/química , Conejos
11.
Int J Biol Macromol ; 147: 1053-1063, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756490

RESUMEN

In this study, in order to evaluate the influences of drying methods on the chemical structures and bioactivities of polysaccharides from okra (OPPs), four drying methods, including microwave drying at 400 W, 600 W, and 800 W, freezing drying, hot air drying, and vacuum drying, were applied to dry okra fruits. Six different OPPs were extracted from okra dried by different drying methods. Results showed that physicochemical characteristics and bioactivities of OPPs varied by different drying methods. Noticeable variations in extraction yields, molecular weights, rheological properties, molar ratios of constituent monosaccharides, contents of uronic acids, degrees of esterification, and contents of total phenolics were observed in OPPs obtained by different drying methods. In addition, results showed that OPPs, especially OPP-H and OPP-V obtained by hot air drying and vacuum drying, respectively, exhibited remarkable antioxidant activities (ABTS, DPPH, and nitric oxide radical scavenging activities, and ferric reducing antioxidant powers), strong in vitro binding capacities (fat, cholesterol, and bile acids binding capacities), and obvious inhibitory activities on α-amylase and α-glucosidase. Results suggested that the hot air and vacuum drying techniques could be appropriate drying methods before extraction of OPPs with high bioactivities for applications in the functional food and medicine industries.


Asunto(s)
Abelmoschus/química , Antioxidantes/química , Desecación/métodos , Polisacáridos/química , Aire , Liofilización , Microondas , Peso Molecular , Monosacáridos/química , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad , alfa-Amilasas/química , alfa-Glucosidasas/química
12.
Cell Res ; 29(7): 562-578, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31201382

RESUMEN

Error-free mitosis depends on accurate chromosome attachment to spindle microtubules, powered congression of those chromosomes, their segregation in anaphase, and assembly of a spindle midzone at mitotic exit. The centromere-associated kinesin motor CENP-E, whose binding partner is BubR1, has been implicated in congression of misaligned chromosomes and the transition from lateral kinetochore-microtubule association to end-on capture. Although previously proposed to be a pseudokinase, here we report the structure of the kinase domain of Drosophila melanogaster BubR1, revealing its folding into a conformation predicted to be catalytically active. BubR1 is shown to be a bona fide kinase whose phosphorylation of CENP-E switches it from a laterally attached microtubule motor to a plus-end microtubule tip tracker. Computational modeling is used to identify bubristatin as a selective BubR1 kinase antagonist that targets the αN1 helix of N-terminal extension and αC helix of the BubR1 kinase domain. Inhibition of CENP-E phosphorylation is shown to prevent proper microtubule capture at kinetochores and, surprisingly, proper assembly of the central spindle at mitotic exit. Thus, BubR1-mediated CENP-E phosphorylation produces a temporal switch that enables transition from lateral to end-on microtubule capture and organization of microtubules into stable midzone arrays.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas , Huso Acromático/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Clonación Molecular , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Células HEK293 , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Células Sf9
13.
J Cell Biol ; 217(1): 107-116, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29074706

RESUMEN

Protein phase separation or coacervation has emerged as a potential mechanism to regulate biological functions. We have shown that coacervation of a mostly unstructured protein, BuGZ, promotes assembly of spindle and its matrix. BuGZ in the spindle matrix binds and concentrates tubulin to promote microtubule (MT) assembly. It remains unclear, however, whether BuGZ could regulate additional proteins to promote spindle assembly. In this study, we report that BuGZ promotes Aurora A (AurA) activation in vitro. Depletion of BuGZ in cells reduces the amount of phosphorylated AurA on spindle MTs. BuGZ also enhances MCAK phosphorylation. The two zinc fingers in BuGZ directly bind to the kinase domain of AurA, which allows AurA to incorporate into the coacervates formed by BuGZ in vitro. Importantly, mutant BuGZ that disrupts the coacervation activity in vitro fails to promote AurA phosphorylation in Xenopus laevis egg extracts. These results suggest that BuGZ coacervation promotes AurA activation in mitosis.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/metabolismo , Animales , Aurora Quinasa A/antagonistas & inhibidores , Azepinas/farmacología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Dominios Proteicos , Pirimidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , Xenopus laevis/embriología
14.
Sci Rep ; 5: 12204, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26206521

RESUMEN

Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator for an accurate kinetochore-microtubule attachment. However, the regulatory mechanism underlying precise MCAK depolymerase activity control during mitosis remains elusive. Here, we describe a novel pathway involving an Aurora B-PLK1 axis for regulation of MCAK activity in mitosis. Aurora B phosphorylates PLK1 on Thr210 to activate its kinase activity at the kinetochores during mitosis. Aurora B-orchestrated PLK1 kinase activity was examined in real-time mitosis using a fluorescence resonance energy transfer-based reporter and quantitative analysis of native PLK1 substrate phosphorylation. Active PLK1, in turn, phosphorylates MCAK at Ser715 which promotes its microtubule depolymerase activity essential for faithful chromosome segregation. Importantly, inhibition of PLK1 kinase activity or expression of a non-phosphorylatable MCAK mutant prevents correct kinetochore-microtubule attachment, resulting in abnormal anaphase with chromosome bridges. We reason that the Aurora B-PLK1 signaling at the kinetochore orchestrates MCAK activity, which is essential for timely correction of aberrant kinetochore attachment to ensure accurate chromosome segregation during mitosis.


Asunto(s)
Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Humanos/metabolismo , Cinesinas/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Aurora Quinasa B/genética , Proteínas de Ciclo Celular/genética , Cromosomas Humanos/genética , Células HeLa , Humanos , Cinesinas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
15.
Cell Signal ; 23(1): 1-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20633640

RESUMEN

Protein kinase and phosphatase signaling cascade, coupled with other post-translational modifications, orchestrates temporal order of various events during cell division. Among the many mitotic kinases, Polo-like kinase 1 (PLK1) as a key regulator, participates in regulating mitosis from mitotic entry to cytokinesis. The advancement in optical reporter engineering and the recent development of specific chemical probes enable us to visualize spatiotemporal gradient of kinase activity at nano-scale. One of such tools is FRET-based optic sensor that allows us to delineate the PLK1 activity in space and time. In this review, we address the inter-relationships between PLK1 and other protein kinases/phosphatases, as well as the crosstalk between PLK1 phosphorylation and ubiquitination during cell division. In particular, we discuss the molecular mechanisms and steps underlying PLK1 kinase priming, activation and turn-off during cell division.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/fisiología , División Celular , Citocinesis , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal , Ubiquitinación , Quinasa Tipo Polo 1
16.
J Mol Cell Biol ; 3(4): 260-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21148584

RESUMEN

During cell division, chromosome segregation is orchestrated by the interaction of spindle microtubules with the centromere. Accurate attachment of spindle microtubules to kinetochore requires the chromosomal passenger of Aurora B kinase complex with borealin, INCENP and survivin (SUR). The current working model argues that SUR is responsible for docking Aurora B to the centromere whereas its precise role in Aurora B activation has been unclear. Here, we show that Aurora B kinase activation requires SUR priming phosphorylation at Ser20 which is catalyzed by polo-like kinase 1 (PLK1). Inhibition of PLK1 kinase activity or expression of non-phosphorylatable SUR mutant prevents Aurora B activation and correct spindle microtubule attachment. The PLK1-mediated regulation of Aurora B kinase activity was examined in real-time mitosis using fluorescence resonance energy transfer-based reporter and quantitative analysis of native Aurora B substrate phosphorylation. We reason that the PLK1-mediated priming phosphorylation is critical for orchestrating Aurora B activity in centromere which is essential for accurate chromosome segregation and faithful completion of cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular , Centrómero/metabolismo , Segregación Cromosómica , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Survivin , Quinasa Tipo Polo 1
17.
J Biol Chem ; 282(29): 21415-24, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17535814

RESUMEN

Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here, we show that Homo sapiens (Hs) NUF2 is required for stable kinetochore localization of centromere-associated protein E (CENP-E) in HeLa cells. HsNUF2 specifies the kinetochore association of CENP-E by interacting with its C-terminal domain. The region of HsNUF2 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pulldown and yeast two-hybrid assays. Suppression of synthesis of HsNUF2 by small interfering RNA abrogated the localization of CENP-E to the kinetochore, demonstrating the requirement of HsNUF2 for CENP-E kinetochore localization. In addition, depletion of HsNUF2 caused aberrant chromosome segregation. These HsNUF2-suppressed cells displayed reduced tension at kinetochores of bi-orientated chromosomes. Double knockdown of CENP-E and HsNUF2 further abolished the tension at the kinetochores. Our results indicate that HsNUF2 and CENP-E are required for organization of stable microtubule-kinetochore attachment that is essential for faithful chromosome segregation in mitosis.


Asunto(s)
Proteínas de Ciclo Celular/química , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/química , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Línea Celular , Cromosomas/ultraestructura , Células HeLa , Humanos , Mitosis , Modelos Biológicos , Modelos Genéticos , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA