RESUMEN
In this study, we used the nanoparticle delivery system to reduce the side effect of conventional cancer treatment- radiation therapy and chemotherapy. We used rice husk silicon source mesoporous silica nanoparticle doped in Eu3+ and Gd3+ as the carrier in the delivery system and to enable fluorescence and MRI dual-imaging functions for follow-up therapy. In addition, we choose a popular seaweed extract-fucoidan was extracted from the same brown algae-Sargassum aquifolium collected from Taiwan-Pingtung-Kenting-Chuanfan Rock. In this research, we used acid hydrolysis to prepared two different molecular weight fucoidan, the small molecular fucoidan (Fus) as drug, and the molecular weight approximately 1 kDa fucoidan (Ful) as the nanoparticle gatekeeper, and as targeting molecule for overexpressed P-selectin on the surface of the metastatic tumors. The results of the cell cytotoxicity experiment showed that HCT116 cancer cells have a survival rate of approximately 58.12% when treated with 200 µg/mL fucoidan. Dual-imaging rice husk mesoporous silica nanoparticles (rMSN-EuGd) were modified with 1 kDa fucoidan (Ful) as the gatekeeper and target, and the small molecule fucoidan (Fus) was loaded into nanoparticles (Ful-Fus@rMSN-EuGd) at a concentration of 200 µg/mL. The HCT116 cancer cells had a survival rate of approximately 55.56%. The cell cytotoxicity experiment results show that Ful-Fus@rMSN-EuGd can improve the anticancer effect of fucoidan, and the nanoparticle drug delivery system using fucoidan as a drug, target, and gatekeeper was successfully synthesized.
Asunto(s)
Nanopartículas , Neoplasias , Oryza , Sargassum , Humanos , Nanopartículas/uso terapéutico , Neoplasias/patología , Polisacáridos/farmacología , Dióxido de SilicioRESUMEN
BACKGROUND: Canine mammary gland tumors (cMGTs) are the most common neoplasms in intact female canines and viewed as a suitable model for studying human breast cancers. Euphorbia royleana has been reported to have a variety of antitumor efficacies. We have prepared the crude extracts of E. royleana in ethanol and hexane solvents to evaluate the anti-tumor effects for cMGT in vitro and in vivo. RESULTS: The results showed that E. royleana could inhibit cell proliferation and colony formation in cMGT cells. The suppression of tumor cell growth resulted from necrosis and cell cycle arrest. Moreover, autophagy appears to play a critical role in E. royleana-mediated cell death by triggering cell apoptosis. The in vivo results also revealed that E. royleana treatment could reduce the size of solid tumors while exhibiting low toxicity in cMGT-bearing nude mice. CONCLUSIONS: The anti-tumor mechanisms of E. royleana were firstly verified to show it would cause autophagic cell death, apoptosis, and cell cycle arrest in canine mammary tumor cells. The in vitro and in vivo findings in the present study revealed E. royleana has potential anticancer effects for the treatment of canine mammary gland tumors.
Asunto(s)
Autofagia/efectos de los fármacos , Euphorbia/química , Neoplasias Mamarias Animales/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular , Chlorocebus aethiops , Enfermedades de los Perros/tratamiento farmacológico , Perros , Femenino , Ratones Desnudos , Extractos Vegetales/toxicidad , Células VeroRESUMEN
Inexpensive and air stable triphenylcarbenium tetrafluoroborate efficiently promoted the carbofluorination of N-arylpropargylpyrrolidines bearing a tertiary allylic alcohol tether at the 2-position of the pyrrolidine ring to provide 1-isobutenyl-2-(fluoro(phenyl)methylenylhexahydro-1H-pyrrolizidines in a stereoselective fashion. When subjected to bis(trifluoromethane)sulfonamide, the same substrates underwent cycloisomerization reaction within minutes to generate 1-isobutenyl-2-benzoylhexahydro-1H-pyrrolizidines with excellent stereoselectivity.
RESUMEN
In this study, we introduced dual-targeting folic acid (FA) and hyaluronic acid (HA) modified on the surface of rice husk mesoporous silica nanoparticles (rMSNs). The rMSNs were employed as a drug delivery system loaded with camptothecin (CPT) as a model drug, Eu3+ ions as a photosensitizer for photodynamic therapy (PDT), bismuth (Bi) for photothermal therapy (PTT), and Gd3+ ions for magnetic resonance imaging (MRI) to develop novel nanoparticles, rMSN-EuGd-Bi@CPT-HA-FA, with dual-targeted function and triple therapy for cancer treatment. The results of the cell cytotoxicity experiment showed that the A549 cancer cells had a survival rate of approximately 35% when treated with 200 µg mL-1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 15 min. The dual-targeted function and synergistic treatment of CPT, PTT, and PDT were also responsible for the 20% survival rate of the A549 cancer cells treated with 200 µg mL-1 of rMSN-EuGd-Bi@CPT-HA-FA under 808 nm irradiation for 30 min. The results showed that rMSN-EuGd-Bi@CPT-HA-FA can effectively combine chemotherapy (through CPT), PDT, and PTT for cancer treatment.
RESUMEN
Traditional treatment of cancers such as chemotherapy still causes many side effects after the treatment even nowadays, therefore combination therapies by using drug delivery systems are valued by more and more scientists. However, loading multiple drugs in the nanoparticles for drug delivery system may cause insufficient drugs or functional groups, which might let the nanomaterial have fewer functions. Therefore, making the mesoporous silica nanoparticles (MSNs) have photodynamic therapy function by "doping " lanthanide ions into the material structure, can evade this problem. Moreover, with the doping of lanthanide metals, the MSNs can have not only dual imaging functions of both magnetic resonance imaging and fluorescence, but also achieve photodynamic function. To feature the material with more function, chemotherapeutic drug-doxorubicin was loaded into the pores of MSNs and then bonded hyaluronic acid which is the active target and a gatekeeper, on the surface of MSNs. Finally, an all-in-one drug delivery system" Hyaluronidase and pH-responsive mesoporous silica nanoparticles with dual-imaging activity for chemo-photodynamic therapy" is synthesized. The first part in this experiment was to confirm the physical properties of the lanthanides dopped MSN and its photodynamic treatment effect. The second part was to confirm that each organic molecule had been successfully bonded to the surface of the MSN and achieve pH and Hyaluronidase response drug release effect, The last part was to prove that the drug delivery system had a significant anticancer effect through cell experiments.
Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Fotoquimioterapia , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Hialuronoglucosaminidasa , Nanopartículas/química , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Porosidad , Dióxido de Silicio/químicaRESUMEN
BACKGROUND: Plasma epidermal growth factor receptor (EGFR) mutation tests are less invasive than tissue EGFR mutation tests. We determined which of two kits is more efficient: cobas EGFR Mutation test v2 (cobasv2; Roche Molecular Systems, Pleasanton, CA, USA) or PANAMutyper-R-EGFR (Mutyper; Panagene, Daejeon, Korea). We also evaluated whether pleural effusion supernatant (PE-SUP) samples are assayable, similar to plasma samples, using these two kits. METHODS: We analyzed 156 plasma and PE-SUP samples (31 paired samples) from 116 individuals. We compared the kits in terms of accuracy, assessed genotype concordance (weighted κ with 95% confidence intervals), and calculated Spearman's rho between semi-quantitatively measured EGFR-mutant levels (SQIs) measured by each kit. We also compared sensitivity using 47 EGFR-mutant harboring samples divided into more-dilute and less-dilute samples (dilution ratio: ≥ or <1:1,000). RESULTS: cobasv2 tended to have higher accuracy than Mutyper (73% vs 69%, P=0.53), and PE-SUP samples had significantly higher accuracy than plasma samples (97% vs 55-71%) for both kits. Genotype concordance was 98% (κ=0.92, 0.88-0.96). SQIs showed strong positive correlations (P<0.0001). In less-dilute samples, accuracy and sensitivity did not differ significantly between kits. In more-dilute samples, cobasv2 tended to have higher sensitivity than Mutyper (43% vs 20%, P=0.07). CONCLUSIONS: The kits have similar performance in terms of EGFR mutation detection and semi-quantification in plasma and PE-SUP samples. cobasv2 tends to outperform Mutyper in detecting less-abundant EGFR-mutants. PE-SUP samples are assayable using either kit.
Asunto(s)
Receptores ErbB/genética , Derrame Pleural/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Adulto , Anciano , Anciano de 80 o más Años , ADN/aislamiento & purificación , ADN/metabolismo , Receptores ErbB/sangre , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Derrame Pleural/sangre , Derrame Pleural/genética , Juego de Reactivos para Diagnóstico , Adulto JovenRESUMEN
Splicing factors (SFs) are involved in oncogenesis or immune modulation, the common underlying processes giving rise to pleural effusion (PE). The expression profiles of three SFs (HNRNPA1, SRSF1, and SRSF3) and their clinical values have never been assessed in PE. The three SFs (in pellets of PE) and conventional tumor markers were analyzed using PE samples in patients with PE (N = 336). The sum of higher-molecular weight (Mw) forms of HNRNPA1 (Sum-HMws-HNRNPA1) and SRSF1 (Sum-HMws-SRSF1) and SRSF3 levels were upregulated in malignant PE (MPE) compared to benign PE (BPE); they were highest in cytology-positive MPE, followed by tuberculous PE and parapneumonic PE. Meanwhile, the lowest-Mw HNRNPA1 (LMw-HNRNPA1) and SRSF1 (LMw-SRSF1) levels were not upregulated in MPE. Sum-HMws-HNRNPA1, Sum-HMws-SRSF1, and SRSF3, but neither LMw-HNRNPA1 nor LMw-SRSF1, showed positive correlations with cancer cell percentages in MPE. The detection accuracy for MPE was high in the order of carcinoembryonic antigen (CEA, 85%), Sum-HMws-HNRNPA1 (76%), Sum-HMws-SRSF1 (68%), SRSF3, cytokeratin-19 fragments (CYFRA 21-1), LMw-HNRNPA1, and LMw-SRSF1. Sum-HMws-HNRNPA1 detected more than half of the MPE cases that were undetected by cytology and CEA. Sum-HMws-HNRNPA1, but not other SFs or conventional tumor markers, showed an association with longer overall survival among patients with MPE receiving chemotherapy. Our results demonstrated different levels of the three SFs with their Mw-specific profiles depending on the etiology of PE. We suggest that Sum-HMws-HNRNPA1 is a supplementary diagnostic marker for MPE and a favorable prognostic indicator for patients with MPE receiving chemotherapy.