Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome ; 61(2): 121-130, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29304291

RESUMEN

Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.


Asunto(s)
Capsicum/genética , Proteínas de Transporte de Membrana/genética , Familia de Multigenes , Proteínas de Plantas/genética , Capsicum/metabolismo , Mapeo Cromosómico , Genoma de Planta , Proteínas de Transporte de Membrana/clasificación , Proteínas de Transporte de Membrana/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Transcriptoma
2.
BMC Genet ; 18(1): 33, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28388893

RESUMEN

BACKGROUND: Auxin plays an important role in regulating plant growth and development as well as in the response of plants to abiotic stresses. Auxin is transported by three kinds of major protein families, including the AUXIN RESISTANT 1/LIKE AUX1 (AUX/LAX) influx carriers, the PIN-FORMED (PIN) efflux carriers and the ATP binding cassette B/P-glycoprotein/Multidrug-resistance (ABCB/MDR/PGP) efflux/condition carriers. The biological function of several auxin transporter genes has been well characterized in Arabidopsis thaliana. However, their function in response to exogenous auxin and abiotic stresses in watermelon (Citrullus lanatus. L) remained unknown. RESULTS: Here, the latest updated watermelon genome was used to characterise the ClLAX, ClPIN and ClABCB family genes from watermelon. The genome-wide analysis of the ClLAX, ClPIN and ClABCB family genes, including chromosome localisation, gene structure, and phylogenic relationships, was carried out. Seven ClLAXs, 11 ClPINs and 15 ClABCBs were mapped on 10 watermelon chromosomes. The expression profiles of the ClLAX, ClPIN and ClABCB genes under exogenous indole-3-acetic acid and various abiotic stresses (salt, drought, and cold stresses) treatments were performed by quantitative real-time PCR (qRT-PCR). The transcriptional level of majority ClLAX, ClPIN and ClABCB genes were changed by abiotic stresses in both shoots and roots. We also analysed the expression levels of ClLAX, ClPIN and ClABCB genes in graft response. CONCLUSION: Analysis of the expression patterns of ClLAX, ClPIN and ClABCB genes under salt, drought, cold treatment and grafting response helps us to understand the possible roles of auxin transporter genes in watermelon adaptation to environmental stresses.


Asunto(s)
Citrullus/genética , Citrullus/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genómica , Fitomejoramiento , Estrés Fisiológico/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Citrullus/metabolismo , Ácidos Indolacéticos/metabolismo , Especificidad de Órganos , Filogenia
3.
Int J Mol Sci ; 18(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244768

RESUMEN

Auxin response factors (ARFs) play important roles in regulating plant growth and development and response to environmental stress. An exhaustive analysis of the CaARF family was performed using the latest publicly available genome for pepper (Capsicum annuum L.). In total, 22 non-redundant CaARF gene family members in six classes were analyzed, including chromosome locations, gene structures, conserved motifs of proteins, phylogenetic relationships and Subcellular localization. Phylogenetic analysis of the ARFs from pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), Arabidopsis and rice (Oryza sativa L.) revealed both similarity and divergence between the four ARF families, and aided in predicting biological functions of the CaARFs. Furthermore, expression profiling of CaARFs was obtained in various organs and tissues using quantitative real-time RT-PCR (qRT-PCR). Expression analysis of these genes was also conducted with various hormones and abiotic treatments using qRT-PCR. Most CaARF genes were regulated by exogenous hormone treatments at the transcriptional level, and many CaARF genes were altered by abiotic stress. Systematic analysis of CaARF genes is imperative to elucidate the roles of CaARF family members in mediating auxin signaling in the adaptation of pepper to a challenging environment.


Asunto(s)
Proteínas de Arabidopsis/genética , Capsicum/genética , Proteínas de Unión al ADN/genética , Filogenia , Estrés Fisiológico/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Capsicum/crecimiento & desarrollo , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Familia de Multigenes/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Alineación de Secuencia
4.
Bot Stud ; 57(1): 24, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28597434

RESUMEN

BACKGROUND: Anthocyanins are the conspicuous pigments of flowering plants and participate in several aspects of plant development and defense, such as seeds and pollens dispersal. Leaf colour (Lc) is the first basic/helix-loop-helix (bHLH) transcription factor controlling anthocyanin biosynthesis isolated from maize (Zea mays L.). Ectopic expression of maize Lc enhanced anthocyanin biosynthesis in many plants including tobacco (Nicotiana tobacum L.). However, the molecular regulatory mechanism of anthocyanin biosynthesis in the different floral parts of tobacco remains largely unknown. Therefore, the molecular and biochemical characterization of anthocyanin biosynthesis were investigated in the flowers of both wild type and Lc-transgenic tobacco plants. RESULTS: At the reproductive stage, with respect to the different parts of the flowers in wild type SR1, the calyxes and the pistils were green, and the petals and the filaments showed light pink pigmentation; the Lc-transgenic tobacco exhibited light red in calyxes and crimson in petals and in filaments respectively. Correspondingly, the total anthocyanin contents (TAC) in calyxes, petals and filaments of Lc-transgenic plants were much higher than that of the counterparts in SR1. Though the TAC in anthers of Lc-transgenic plants was low, it was still significantly higher than that of SR1. SR1 has almost the same TAC in the pistils as Lc-transgenic plants. Consistent with the intense phenotype and the increased TAC, Lc was weakly expressed in the calyxes and strongly expressed in petals and filaments of Lc-transgenic plants, while Lc was not detected in SR1. The expression level of NtAN2 in petals was similar between SR1 and Lc-transgenic lines. In agreement with the expression profile of Lc, both early (NtCHS) and late anthocyanin-biosynthetic genes (NtDFR, NtF3'H, and NtANS) were coordinately up-regulated in the counterparts of flowers. HPLC analysis demonstrated that the cyanidin (Cya) deposition was mainly responsible for the intense pigmentation of Lc-transgenic tobacco. CONCLUSIONS: Ectopic expression of Lc greatly enhanced both early- and late- anthocyanin-biosynthetic gene expression, and therefore resulted in the Cya-based TAC increase in the calyxes, the filaments and the petals in tobacco plants.

5.
J Genet Genomics ; 39(3): 149-56, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22464474

RESUMEN

Anthocyanins often accumulate in plants subjected to environmental stress, including low temperature. However, the molecular regulatory mechanism of anthocyanin biosynthesis at low temperature is largely unknown. Here, tobacco was transformed with a maize anthocyanin regulatory gene Lc driven by AtSPX3 promoter to investigate the effect of Lc upon the anthocyanin-biosynthesis pathway. We found that the anthocyanin-biosynthesis pathway could not be activated in wild type, while Lc-transgenic tobacco lines exhibited purple pigmentation in juvenile leaves at low temperature. Accordingly, the total anthocyanin contents increased specifically in juvenile leaves in Lc-transgenic lines. Transcriptional analysis showed that NtCHS and NtCHI were induced by low temperature in leaves of wild type and transgenic lines. NtDFR was uniquely expressed in Lc-transgenic lines, but its transcript was not detected in wild type, implying that NtDFR expression in tobacco leaves was dependent on Lc. Furthermore, the expression of NtAN2 (regulatory gene) and NtANS (anthocyanidin synthase gene) was coordinately upregulated in Lc-transgenic lines under low temperature, suggesting that both Lc and NtAN2 might activate the expression of NtANS. Based on our findings and previous reports, we postulated that Lc interacted with NtAN2 induced by low-temperature stress and consequently stimulated anthocyanin biosynthesis in juvenile leaves of Lc-transgenic tobacco lines.


Asunto(s)
Antocianinas/metabolismo , Nicotiana/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Antocianinas/biosíntesis , Frío , Regulación de la Expresión Génica de las Plantas , Oxigenasas/genética , Oxigenasas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA