Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Development ; 146(20)2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31575648

RESUMEN

The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuronas Motoras/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Cell Sci ; 129(17): 3295-308, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466379

RESUMEN

Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A-Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A-Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm.


Asunto(s)
Diafragma/inervación , Diafragma/metabolismo , Desarrollo de Músculos , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal , Animales , Fasciculación Axonal , Diafragma/embriología , Embrión de Mamíferos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Neuronas Motoras/metabolismo , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nervio Frénico/metabolismo , Receptores Inmunológicos/metabolismo , Células Madre/metabolismo , Tendones/metabolismo , Proteínas Roundabout
3.
Dev Biol ; 413(1): 86-103, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26187199

RESUMEN

During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.


Asunto(s)
Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Tubo Neural/embriología , Factores de Transcripción Paired Box/genética , Sistema Nervioso Periférico/embriología , Proteínas Represoras/genética , Alelos , Animales , Axones/metabolismo , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Linaje de la Célula , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas del Ojo/fisiología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/fisiología , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/fisiología , Fenotipo , Estructura Terciaria de Proteína , Proteínas Represoras/fisiología , Rombencéfalo/metabolismo , Células Madre/citología , Factores de Transcripción/genética
4.
Dev Biol ; 399(1): 2-14, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25512301

RESUMEN

The correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1(cond) and Npn1(Sema-) to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre(+);Npn1(cond-/-) mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1(Sema-) mutants appeared anatomically normal. Furthermore, Olig2-Cre(+);Npn1(cond) mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1(Sema-) mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre(+);Npn1(cond-/-) mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1(Sema-) mutants to compensate for their developmental deficits.


Asunto(s)
Neuronas Motoras/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/fisiología , Axones/ultraestructura , Peso Corporal/genética , Peso Corporal/fisiología , Desarrollo Óseo/genética , Desarrollo Óseo/fisiología , Huesos/embriología , Huesos/inervación , Huesos/metabolismo , Miembro Anterior/embriología , Miembro Anterior/crecimiento & desarrollo , Miembro Anterior/inervación , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Actividad Motora/genética , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/inervación , Fibras Nerviosas/metabolismo , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Neuropilina-1/genética , Semaforina-3A/genética , Transducción de Señal/genética , Factores de Tiempo
5.
Dev Biol ; 386(2): 358-70, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24374159

RESUMEN

Motor neurons in the vertebrate spinal cord are stereotypically organized along the rostro-caudal axis in discrete columns that specifically innervate peripheral muscle domains. Originating from the same progenitor domain, the generation of spinal motor neurons is orchestrated by a spatially and temporally tightly regulated set of secreted molecules and transcription factors such as retinoic acid and the Lim homeodomain transcription factors Isl1 and Lhx1. However, the molecular interactions between these factors remained unclear. In this study we examined the role of the microRNA 9 (miR-9) in the specification of spinal motor neurons and identified Onecut1 (OC1) as one of its targets. miR-9 and OC1 are expressed in mutually exclusive patterns in the developing chick spinal cord, with high OC1 levels in early-born motor neurons and high miR-9 levels in late-born motor neurons. miR-9 efficiently represses OC1 expression in vitro and in vivo. Overexpression of miR-9 leads to an increase in late-born neurons, while miR-9 loss-of-function induces additional OC1(+) motor neurons that display a transcriptional profile typical of early-born neurons. These results demonstrate that regulation of OC1 by miR-9 is a crucial step in the specification of spinal motor neurons and support a model in which miR-9 expression in late-born LMCl neurons downregulates Isl1 expression through inhibition of OC1. In conclusion, our study contributes essential factors to the molecular network specifying spinal motor neurons and emphasizes the importance of microRNAs as key players in the generation of neuronal diversity.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , MicroARNs/metabolismo , Neuronas Motoras/fisiología , Factores de Transcripción Onecut/metabolismo , Médula Espinal/embriología , Análisis de Varianza , Animales , Secuencia de Bases , Embrión de Pollo , Electroporación , Fluorescencia , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Luciferasas , MicroARNs/genética , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Factores de Transcripción Onecut/genética
6.
Development ; 139(17): 3109-19, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22833130

RESUMEN

During development, spinal motoneurons (MNs) diversify into a variety of subtypes that are specifically dedicated to the motor control of particular sets of skeletal muscles or visceral organs. MN diversification depends on the coordinated action of several transcriptional regulators including the LIM-HD factor Isl1, which is crucial for MN survival and fate determination. However, how these regulators cooperate to establish each MN subtype remains poorly understood. Here, using phenotypic analyses of single or compound mutant mouse embryos combined with gain-of-function experiments in chick embryonic spinal cord, we demonstrate that the transcriptional activators of the Onecut family critically regulate MN subtype diversification during spinal cord development. We provide evidence that Onecut factors directly stimulate Isl1 expression in specific MN subtypes and are therefore required to maintain Isl1 production at the time of MN diversification. In the absence of Onecut factors, we observed major alterations in MN fate decision characterized by the conversion of somatic to visceral MNs at the thoracic levels of the spinal cord and of medial to lateral MNs in the motor columns that innervate the limbs. Furthermore, we identify Sip1 (Zeb2) as a novel developmental regulator of visceral MN differentiation. Taken together, these data elucidate a comprehensive model wherein Onecut factors control multiple aspects of MN subtype diversification. They also shed light on the late roles of Isl1 in MN fate decision.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas con Homeodominio LIM/metabolismo , Neuronas Motoras/fisiología , Factores de Transcripción Onecut/metabolismo , Médula Espinal/citología , Factores de Transcripción/metabolismo , Animales , Embrión de Pollo , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Electroporación , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Ratones
7.
PLoS Biol ; 9(2): e1001020, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21364975

RESUMEN

The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.


Asunto(s)
Axones/metabolismo , Extremidades/inervación , Neuronas Motoras/metabolismo , Neuropilina-1/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Fasciculación/metabolismo , Fasciculación/patología , Eliminación de Gen , Integrasas/metabolismo , Ratones , Neuronas Motoras/patología , Células Receptoras Sensoriales/patología , Factores de Tiempo
8.
Dev Biol ; 359(2): 230-41, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21925156

RESUMEN

Interaction of the axon guidance receptor Neuropilin-1 (Npn-1) with its repulsive ligand Semaphorin 3A (Sema3A) is crucial for guidance decisions, fasciculation, timing of growth and axon-axon interactions of sensory and motor projections in the embryonic limb. At cranial levels, Npn-1 is expressed in motor neurons and sensory ganglia and loss of Sema3A-Npn-1 signaling leads to defasciculation of the superficial projections to the head and neck. The molecular mechanisms that govern the initial fasciculation and growth of the purely motor projections of the hypoglossal and abducens nerves in general, and the role of Npn-1 during these events in particular are, however, not well understood. We show here that selective removal of Npn-1 from somatic motor neurons impairs initial fasciculation and assembly of hypoglossal rootlets and leads to reduced numbers of abducens and hypoglossal fibers. Ablation of Npn-1 specifically from cranial neural crest and placodally derived sensory tissues recapitulates the distal defasciculation of mixed sensory-motor nerves of trigeminal, facial, glossopharyngeal and vagal projections, which was observed in Npn-1(-/-) and Npn-1(Sema-) mutants. Surprisingly, the assembly and fasciculation of the purely motor hypoglossal nerve are also impaired and the number of Schwann cells migrating along the defasciculated axonal projections is reduced. These findings are corroborated by partial genetic elimination of cranial neural crest and embryonic placodes, where loss of Schwann cell precursors leads to aberrant growth patterns of the hypoglossal nerve. Interestingly, rostral turning of hypoglossal axons is not perturbed in any of the investigated genotypes. Thus, initial hypoglossal nerve assembly and fasciculation, but not later guidance decisions depend on Npn-1 expression and axon-Schwann cell interactions.


Asunto(s)
Movimiento Celular , Nervios Craneales/metabolismo , Fasciculación/metabolismo , Neuropilina-1/metabolismo , Células de Schwann/metabolismo , Nervio Abducens/embriología , Nervio Abducens/metabolismo , Animales , Axones/metabolismo , Nervios Craneales/embriología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Fasciculación/genética , Femenino , Nervio Hipogloso/embriología , Nervio Hipogloso/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Mutación , Cresta Neural/embriología , Cresta Neural/metabolismo , Neuropilina-1/genética , Factores de Transcripción SOXE/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
9.
Brain ; 134(Pt 4): 1156-67, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21421691

RESUMEN

Oligodendrocyte precursor cells, which persist in the adult central nervous system, are the main source of central nervous system remyelinating cells. In multiple sclerosis, some demyelinated plaques exhibit an oligodendroglial depopulation, raising the hypothesis of impaired oligodendrocyte precursor cell recruitment. Developmental studies identified semaphorins 3A and 3F as repulsive and attractive guidance cues for oligodendrocyte precursor cells, respectively. We previously reported their increased expression in experimental demyelination and in multiple sclerosis. Here, we show that adult oligodendrocyte precursor cells, like their embryonic counterparts, express class 3 semaphorin receptors, neuropilins and plexins and that neuropilin expression increases after demyelination. Using gain and loss of function experiments in an adult murine demyelination model, we demonstrate that semaphorin 3A impairs oligodendrocyte precursor cell recruitment to the demyelinated area. In contrast, semaphorin 3F overexpression accelerates not only oligodendrocyte precursor cell recruitment, but also remyelination rate. These data open new avenues to understand remyelination failure and promote repair in multiple sclerosis.


Asunto(s)
Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Semaforinas/metabolismo , Médula Espinal/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Movimiento Celular/fisiología , Células Cultivadas , Células HEK293 , Humanos , Inmunohistoquímica , Ratones , Proteína Básica de Mielina/metabolismo , Estadísticas no Paramétricas
10.
Mol Cell Neurosci ; 45(4): 439-48, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20692345

RESUMEN

The Ca(2+)-stimulated adenylate cyclase 1 (AC1) is a key mediator of retinotopic map refinement and is required for the retraction response of retinal growth cones to the guidance cue ephrin-A5. We show here that AC1 is dynamically expressed in subpopulations of motor neurons in the spinal cord and sensory neurons of the dorsal root ganglia during development. AC1 was first detected around E12.5 in motoneurons of the medial aspect of the lateral motor column (LMCm) and the lateral region of the medial motor column (MMCl), which project to the ventral limb and body wall musculature, respectively. Expression levels gradually increased until they reached a maximum at a time when peripheral sensory and motor axons branch and establish connections with their targets. In barrelless mice, where a mutation inactivates the AC1 gene, sensory projections to the skin in the limbs and trunk region as well as innervations of the intercostal musculature provided by MMCl axons show increased branching. These results suggest a function of AC1 in the formation of peripheral nerve trajectories such as branching and pruning, after the initial projections have been laid down.


Asunto(s)
Adenilil Ciclasas/metabolismo , Ganglios Espinales/crecimiento & desarrollo , Conos de Crecimiento/enzimología , Neurogénesis/fisiología , Adenilil Ciclasas/genética , Animales , Ganglios Espinales/enzimología , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Neuronas Motoras/enzimología , ARN Mensajero/análisis , Células Receptoras Sensoriales/enzimología , Piel/inervación , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo
11.
Eur J Neurosci ; 31(7): 1164-72, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20345923

RESUMEN

In early development, an excess of neurons is generated, of which later about half will be lost by cell death due to a limited supply of trophic support by their respective target areas. However, some of the neurons die when their axons have not yet reached their target, thus suggesting that additional causes of developmental cell death exist. Semaphorin 3A (Sema3A), in addition to its function as a guidance cue and mediator of timing and fasciculation of motor and sensory axon outgrowth, can also induce death of sensory neurons in vitro. However, it is unknown whether Neuropilin-1 (Npn-1), its binding receptor in axon guidance, also mediates the death-inducing activity. We show here that abolished Sema3A-Npn-1 signaling does not influence the cell death patterns of motor or sensory neurons in mouse during the developmental wave of programmed cell death. The number of motor and sensory neurons was unchanged at embryonic day 15.5 when this wave is concluded. Interestingly, the defasciculation of early motor and sensory projections that is observed in the absence of Sema3A or Npn-1 persists to postnatal stages. Thus, Sema3A-Npn-1 signaling plays an important role in the guidance and fasciculation of motor and sensory axons but does not contribute to the developmental elimination of these neurons.


Asunto(s)
Apoptosis/fisiología , Axones/fisiología , Neuropilina-1/metabolismo , Nervios Periféricos/citología , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Caspasa 3/metabolismo , Embrión de Mamíferos , Femenino , Ganglios Espinales/citología , Ganglios Espinales/embriología , Etiquetado Corte-Fin in Situ/métodos , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/citología , Proteínas de Neurofilamentos/metabolismo , Neuropilina-1/genética , Nervios Periféricos/embriología , Embarazo , Semaforina-3A/genética , Células Receptoras Sensoriales/citología
12.
Neuron ; 48(6): 949-64, 2005 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16364899

RESUMEN

Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the timing of motor axon in-growth to the limb. Lateral motor column (LMC) motor axons within spinal nerves are defasciculated as they grow toward the limb and converge in the plexus region. Medial and lateral LMC motor axons show dorso-ventral guidance defects in the forelimb. In contrast, Sema3F-Npn-2 signaling guides the axons of a medial subset of LMC neurons to the ventral limb, but plays no major role in regulating their fasciculation. Thus, Sema3A-Npn-1 and Sema3F-Npn-2 signaling control distinct steps of motor axon growth and guidance during the formation of spinal motor connections.


Asunto(s)
Conos de Crecimiento/metabolismo , Neuronas Motoras/metabolismo , Neuropilinas/metabolismo , Semaforinas/metabolismo , Transducción de Señal/fisiología , Médula Espinal/embriología , Animales , Tipificación del Cuerpo/fisiología , Plexo Braquial/embriología , Diferenciación Celular/fisiología , Embrión de Pollo , Miembro Anterior/embriología , Miembro Anterior/inervación , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/ultraestructura , Miembro Posterior/embriología , Miembro Posterior/inervación , Esbozos de los Miembros/embriología , Esbozos de los Miembros/inervación , Plexo Lumbosacro/embriología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Neuronas Motoras/citología , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo
13.
Front Biosci ; 13: 3136-49, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17981783

RESUMEN

In humans up to 80% of the information received from the outside world is processed by the visual pathway. Therefore, understanding the molecular and cellular bases of the formation of the retinofugal projection has been in the focus of research during the last decades. Besides our interest in the development of the visual pathway per se this circuit is also an excellent model system to study axon guidance, midline crossing, and formation of topographic neuronal maps in general. The generation of genetic animal models as well as the design of in vitro loss- and gain-of-function paradigms have provided insight into transcriptional networks, identified signalling molecules, extracellular matrix components, morphogens, and activity patterns which are involved in the establishment of the visual pathway. To provide a picture as complete as possible, we will summarize molecular mechanisms involved in axon guidance and retinotopic mapping as well as neuronal activity shaping retinal and thalamocortical projections focusing on the mouse as a model system and highlight discoveries made in other organisms that contribute to our understanding.


Asunto(s)
Axones/fisiología , Quiasma Óptico/metabolismo , Nervio Óptico/fisiología , Retina/metabolismo , Visión Ocular , Vías Visuales , Animales , Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Humanos , Modelos Biológicos , Sistema Nervioso , Nervio Óptico/metabolismo , Retina/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética
14.
Sci Rep ; 8(1): 8097, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802307

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a key player in neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Accumulation of TDP-43 is associated with neuronal death in the brain. How increased and disease-causing mutant forms of TDP-43 induce cell death remains unclear. Here we addressed the role of TDP-43 during neural development and show that reduced TDP-43 causes defects in neural stem/progenitor cell proliferation but not cell death. However, overexpression of wild type and TDP-43A315T proteins induce p53-dependent apoptosis of neural stem/progenitors and human induced pluripotent cell (iPS)-derived immature cortical neurons. We show that TDP-43 induces expression of the proapoptotic BH3-only genes Bbc3 and Bax, and that p53 inhibition rescues TDP-43 induced cell death of embryonic mouse, and human cortical neurons, including those derived from TDP-43G298S ALS patient iPS cells. Hence, an increase in wild type and mutant TDP-43 induces p53-dependent cell death in neural progenitors developing neurons and this can be rescued. These findings may have important implications for accumulated or mutant TDP-43 induced neurodegenerative diseases.


Asunto(s)
Apoptosis , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Mutación , Neurogénesis , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Methods Mol Biol ; 1493: 443-466, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27787870

RESUMEN

How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.


Asunto(s)
Axones/fisiología , Desarrollo Embrionario , Semaforinas/fisiología , Animales , Orientación del Axón , Femenino , Ratones , Embarazo
16.
Methods Mol Biol ; 1668: 177-192, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28842910

RESUMEN

Direct or indirect impairment of breathing in humans by diseases or environmental factors can either cause long-term disability and pain, or can ultimately result in death. Automatic respiratory centers in the brainstem control the highly structured process of breathing and signal to a specialized group of motor neurons in the cervical spinal cord that constitute the phrenic nerves. In mammals, the thoracic diaphragm separates the thorax from the abdomen and adopts the function of the primary respiratory musculature. Faithful innervation by the phrenic nerves is a prerequisite for correct functionality of this highly specialized musculature and thus, ultimately, the viability of the entire organism.To analyze the effects of diseases and genetic defects responsible for deleterious or lethal respiratory phenotypes, accurate imaging of respiratory innervation during embryonic development, e.g., in genetically modified mouse models enables the characterization of specific marker genes and pathways that underlie appropriate wiring of the diaphragm. Among the different available immunostaining techniques, wholemount staining methods provide the advantage of clear and faithful three-dimensional information about the location of the antigens of interest. In comparison to routine histological techniques, however, the researcher has to deal with technical challenges, such as antibody penetration, the stability and availability of the antigen, and clearing of the relevant tissue, and the need to be equipped with state-of-the-art microscope equipment.In this methodological chapter, we explain and share our expertise concerning wholemount processing of mouse embryos and thoracic diaphragms for the analysis of mammalian respiratory innervation.


Asunto(s)
Diafragma/inervación , Coloración y Etiquetado/métodos , Tórax/inervación , Animales , Fasciculación Axonal , Orientación del Axón , Moléculas de Adhesión Celular/metabolismo , Diafragma/química , Embrión de Mamíferos , Colorantes Fluorescentes/química , Ratones , Neuronas Motoras/metabolismo , Desarrollo de Músculos , Imagen Óptica , Nervio Frénico/crecimiento & desarrollo , Tórax/química
17.
Neuron ; 91(6): 1276-1291, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27618676

RESUMEN

Subcellular target recognition in the CNS is the culmination of a multiple-step program including axon guidance, target recognition, and synaptogenesis. In cerebellum, basket cells (BCs) innervate the soma and axon initial segment (AIS) of Purkinje cells (PCs) to form the pinceau synapse, but the underlying mechanisms remain incompletely understood. Here, we demonstrate that neuropilin-1 (NRP1), a Semaphorin receptor expressed in BCs, controls both axonal guidance and subcellular target recognition. We show that loss of Semaphorin 3A function or specific deletion of NRP1 in BCs alters the stereotyped organization of BC axon and impairs pinceau synapse formation. Further, we identified NRP1 as a trans-synaptic binding partner of the cell adhesion molecule neurofascin-186 (NF186) expressed in the PC AIS during pinceau synapse formation. These findings identify a dual function of NRP1 in both axon guidance and subcellular target recognition in the construction of GABAergic circuitry.


Asunto(s)
Orientación del Axón/fisiología , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Neuronas GABAérgicas/fisiología , Neuropilina-1/fisiología , Animales , Células CHO , Moléculas de Adhesión Celular/metabolismo , Técnicas de Cocultivo , Cricetulus , Humanos , Factores de Crecimiento Nervioso/metabolismo , Neurogénesis/fisiología , Células de Purkinje/fisiología , Semaforina-3A/fisiología , Sinapsis/fisiología
18.
J Neurosci ; 22(9): 3553-67, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11978832

RESUMEN

Nogo-A is a neurite growth inhibitor involved in regenerative failure and restriction of structural plasticity in the adult CNS. Three major protein products (Nogo-A, -B, and -C) are derived from the nogo gene. Here we describe the embryonic and postnatal expression of the three Nogo isoforms in the rat by in situ hybridization and immunohistochemistry. Northern and Western blot analysis indicated that Nogo-A is predominantly expressed in the nervous system with lower levels also present in testis and heart. In CNS myelin, confocal and immunoelectron microscopy revealed that Nogo-A is expressed in oligodendrocyte cell bodies and processes and localized in the innermost adaxonal and outermost myelin membranes. Additionally, we find Nogo-A to be expressed by projection neurons, in particular during development, and by postmitotic cells in the developing cortex, spinal cord, and cerebellum. The expression levels of Nogo-A/B were not changed significantly after traumatic lesions to the cortex or spinal cord. Nogo-B showed widespread expression in the central and peripheral nervous systems and other peripheral tissues. Nogo-C was mainly found in skeletal muscle, but brain and heart were also found to express this isoform. The localization of Nogo-A in oligodendrocytes fits well with its role as a myelin-associated inhibitor of regenerative fiber growth and structural plasticity. However, expression of Nogo-A in other tissues and, in particular, in neurons and the widespread expression of the two shorter isoforms, Nogo-B and -C, suggest that the Nogo family of proteins might have function(s) additional to the neurite growth-inhibitory activity.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Proteínas de la Mielina/metabolismo , ARN Mensajero/metabolismo , Envejecimiento/metabolismo , Animales , Northern Blotting , Western Blotting , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Sistema Nervioso Central/citología , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Inmunohistoquímica , Hibridación in Situ , Proteínas de la Mielina/genética , Neuritas/metabolismo , Neuritas/ultraestructura , Proteínas Nogo , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
19.
J Neurosci ; 23(13): 5393-406, 2003 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-12843238

RESUMEN

Nogo-A is a potent neurite growth inhibitor in vitro and plays a role both in the restriction of axonal regeneration after injury and in structural plasticity in the CNS of higher vertebrates. The regions that mediate inhibition and the topology of the molecule in the plasma membrane have to be defined. Here we demonstrate the presence of three different active sites: (1) an N-terminal region involved in the inhibition of fibroblast spreading, (2) a stretch encoded by the Nogo-A-specific exon that restricts neurite outgrowth and cell spreading and induces growth cone collapse, and (3) a C-terminal region (Nogo-66) with growth cone collapsing function. We show that Nogo-A-specific active fragments bind to the cell surface of responsive cells and to rat brain cortical membranes, suggesting the existence of specific binding partners or receptors. Several antibodies against different epitopes on the Nogo-A-specific part of the protein as well as antisera against the 66 aa loop in the C-terminus stain the cell surface of living cultured oligodendrocytes. Nogo-A is also labeled by nonmembrane-permeable biotin derivatives applied to living oligodendrocyte cultures. Immunofluorescent staining of intracellular, endoplasmic reticulum-associated Nogo-A in cells after selective permeabilization of the plasma membrane reveals that the epitopes of Nogo-A, shown to be accessible at the cell surface, are exposed to the cytoplasm. This suggests that Nogo-A could have a second membrane topology. The two proposed topological variants may have different intracellular as well as extracellular functions.


Asunto(s)
Proteínas de la Mielina/fisiología , Neuritas/fisiología , Células 3T3 , Animales , Axones/efectos de los fármacos , Axones/fisiología , Sitios de Unión/fisiología , Biotinilación , Química Encefálica , Células CHO , Adhesión Celular , Membrana Celular/química , Membrana Celular/metabolismo , Corteza Cerebral/química , Corteza Cerebral/metabolismo , Embrión de Pollo , Cricetinae , Fibroblastos/metabolismo , Proteínas Ligadas a GPI , Ratones , Datos de Secuencia Molecular , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Oligodendroglía/metabolismo , Unión Proteica/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Ratas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Eliminación de Secuencia
20.
PLoS One ; 10(2): e0118505, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25710467

RESUMEN

Engrailed-1 (En1) is expressed in the ventral ectoderm of the developing limb where it plays an instructive role in the dorsal-ventral patterning of the forelimb. Besides its well-described role as a transcription factor in regulating gene expression through its DNA-binding domain, En1 may also be secreted to form an extracellular gradient, and directly impact on the formation of the retinotectal map. We show here that absence of En1 causes mispatterning of the forelimb and thus defects in the dorsal-ventral pathfinding choice of motor axons in vivo. In addition, En1 but not En2 also has a direct and specific repulsive effect on motor axons of the lateral aspect of the lateral motor column (LMC) but not on medial LMC projections. Moreover, an ectopic dorsal source of En1 pushes lateral LMC axons to the ventral limb in vivo. Thus, En1 controls the establishment of limb innervation through two distinct molecular mechanisms.


Asunto(s)
Miembro Anterior/inervación , Proteínas de Homeodominio/metabolismo , Animales , Axones/metabolismo , Embrión de Pollo , Pollos , Ectodermo/metabolismo , Embrión de Mamíferos/metabolismo , Miembro Anterior/metabolismo , Miembro Anterior/patología , Proteínas de Homeodominio/genética , Inmunohistoquímica , Ratones , Neuronas Motoras/química , Neuronas Motoras/metabolismo , Mutación , Receptor EphA4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA