Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Med Inform Decis Mak ; 22(1): 282, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316772

RESUMEN

BACKGROUND: Cardiac Resynchronization Therapy (CRT) is a widely used, device-based therapy for patients with left ventricle (LV) failure. Unfortunately, many patients do not benefit from CRT, so there is potential value in identifying this group of non-responders before CRT implementation. Past studies suggest that predicting CRT response will require diverse variables, including demographic, biomarker, and LV function data. Accordingly, the objective of this study was to integrate diverse variable types into a machine learning algorithm for predicting individual patient responses to CRT. METHODS: We built an ensemble classification algorithm using previously acquired data from the SMART-AV CRT clinical trial (n = 794 patients). We used five-fold stratified cross-validation on 80% of the patients (n = 635) to train the model with variables collected at 0 months (before initiating CRT), and the remaining 20% of the patients (n = 159) were used as a hold-out test set for model validation. To improve model interpretability, we quantified feature importance values using SHapley Additive exPlanations (SHAP) analysis and used Local Interpretable Model-agnostic Explanations (LIME) to explain patient-specific predictions. RESULTS: Our classification algorithm incorporated 26 patient demographic and medical history variables, 12 biomarker variables, and 18 LV functional variables, which yielded correct prediction of CRT response in 71% of patients. Additional patient stratification to identify the subgroups with the highest or lowest likelihood of response showed 96% accuracy with 22 correct predictions out of 23 patients in the highest and lowest responder groups. CONCLUSION: Computationally integrating general patient characteristics, comorbidities, therapy history, circulating biomarkers, and LV function data available before CRT intervention can improve the prediction of individual patient responses.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Humanos , Biomarcadores , Insuficiencia Cardíaca/terapia , Aprendizaje Automático , Resultado del Tratamiento , Función Ventricular Izquierda/fisiología , Ensayos Clínicos como Asunto
2.
JMIR Med Inform ; 11: e43053, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36534739

RESUMEN

BACKGROUND: Clinical decision support systems (CDSSs) are important for the quality and safety of health care delivery. Although CDSS rules guide CDSS behavior, they are not routinely shared and reused. OBJECTIVE: Ontologies have the potential to promote the reuse of CDSS rules. Therefore, we systematically screened the literature to elaborate on the current status of ontologies applied in CDSS rules, such as rule management, which uses captured CDSS rule usage data and user feedback data to tailor CDSS services to be more accurate, and maintenance, which updates CDSS rules. Through this systematic literature review, we aim to identify the frontiers of ontologies used in CDSS rules. METHODS: The literature search was focused on the intersection of ontologies; clinical decision support; and rules in PubMed, the Association for Computing Machinery (ACM) Digital Library, and the Nursing & Allied Health Database. Grounded theory and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines were followed. One author initiated the screening and literature review, while 2 authors validated the processes and results independently. The inclusion and exclusion criteria were developed and refined iteratively. RESULTS: CDSSs were primarily used to manage chronic conditions, alerts for medication prescriptions, reminders for immunizations and preventive services, diagnoses, and treatment recommendations among 81 included publications. The CDSS rules were presented in Semantic Web Rule Language, Jess, or Jena formats. Despite the fact that ontologies have been used to provide medical knowledge, CDSS rules, and terminologies, they have not been used in CDSS rule management or to facilitate the reuse of CDSS rules. CONCLUSIONS: Ontologies have been used to organize and represent medical knowledge, controlled vocabularies, and the content of CDSS rules. So far, there has been little reuse of CDSS rules. More work is needed to improve the reusability and interoperability of CDSS rules. This review identified and described the ontologies that, despite their limitations, enable Semantic Web technologies and their applications in CDSS rules.

3.
Clin Child Fam Psychol Rev ; 26(4): 975-993, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37676364

RESUMEN

The evidence-based treatment (EBT) movement has primarily focused on core intervention content or treatment fidelity and has largely ignored practitioner skills to manage interpersonal process issues that emerge during treatment, especially with difficult-to-treat adolescents (delinquent, substance-using, medical non-adherence) and those of color. A chief complaint of "real world" practitioners about manualized treatments is the lack of correspondence between following a manual and managing microsocial interpersonal processes (e.g. negative affect) that arise in treating "real world clients." Although family-based EBTs share core similarities (e.g. focus on family interactions, emphasis on practitioner engagement, family involvement), most of these treatments do not have an evidence base regarding common implementation and treatment process problems that practitioners experience in delivering particular models, especially in mid-treatment when demands on families to change their behavior is greatest in treatment - a lack that characterizes the field as a whole. Failure to effectively address common interpersonal processes with difficult-to-treat families likely undermines treatment fidelity and sustained use of EBTs, treatment outcome, and contributes to treatment dropout and treatment nonadherence. Recent advancements in wearables, sensing technologies, multivariate time-series analyses, and machine learning allow scientists to make significant advancements in the study of psychotherapy processes by looking "under the skin" of the provider-client interpersonal interactions that define therapeutic alliance, empathy, and empathic accuracy, along with the predictive validity of these therapy processes (therapeutic alliance, therapist empathy) to treatment outcome. Moreover, assessment of these processes can be extended to develop procedures for training providers to manage difficult interpersonal processes while maintaining a physiological profile that is consistent with astute skills in psychotherapeutic processes. This paper argues for opening the "black box" of therapy to advance the science of evidence-based psychotherapy by examining the clinical interior of evidence-based treatments to develop the next generation of audit- and feedback- (i.e., systemic review of professional performance) supervision systems.


Asunto(s)
Alianza Terapéutica , Adolescente , Humanos , Inteligencia Artificial , Empatía , Psicoterapia/métodos , Resultado del Tratamiento
4.
medRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292830

RESUMEN

Interoperable clinical decision support system (CDSS) rules provide a pathway to interoperability, a well-recognized challenge in health information technology. Building an ontology facilitates creating interoperable CDSS rules, which can be achieved by identifying the keyphrases (KP) from the existing literature. However, KP identification for data labeling requires human expertise, consensus, and contextual understanding. This paper aims to present a semi-supervised KP identification framework using minimal labeled data based on hierarchical attention over the documents and domain adaptation. Our method outperforms the prior neural architectures by learning through synthetic labels for initial training, document-level contextual learning, language modeling, and fine-tuning with limited gold standard label data. To the best of our knowledge, this is the first functional framework for the CDSS sub-domain to identify KPs, which is trained on limited labeled data. It contributes to the general natural language processing (NLP) architectures in areas such as clinical NLP, where manual data labeling is challenging, and light-weighted deep learning models play a role in real-time KP identification as a complementary approach to human experts' effort.

5.
Methods Inf Med ; 61(S 02): e51-e63, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35613942

RESUMEN

BACKGROUND: MetaMap is a valuable tool for processing biomedical texts to identify concepts. Although MetaMap is highly configurative, configuration decisions are not straightforward. OBJECTIVE: To develop a systematic, data-driven methodology for configuring MetaMap for optimal performance. METHODS: MetaMap, the word2vec model, and the phrase model were used to build a pipeline. For unsupervised training, the phrase and word2vec models used abstracts related to clinical decision support as input. During testing, MetaMap was configured with the default option, one behavior option, and two behavior options. For each configuration, cosine and soft cosine similarity scores between identified entities and gold-standard terms were computed for 40 annotated abstracts (422 sentences). The similarity scores were used to calculate and compare the overall percentages of exact matches, similar matches, and missing gold-standard terms among the abstracts for each configuration. The results were manually spot-checked. The precision, recall, and F-measure (ß =1) were calculated. RESULTS: The percentages of exact matches and missing gold-standard terms were 0.6-0.79 and 0.09-0.3 for one behavior option, and 0.56-0.8 and 0.09-0.3 for two behavior options, respectively. The percentages of exact matches and missing terms for soft cosine similarity scores exceeded those for cosine similarity scores. The average precision, recall, and F-measure were 0.59, 0.82, and 0.68 for exact matches, and 1.00, 0.53, and 0.69 for missing terms, respectively. CONCLUSION: We demonstrated a systematic approach that provides objective and accurate evidence guiding MetaMap configurations for optimizing performance. Combining objective evidence and the current practice of using principles, experience, and intuitions outperforms a single strategy in MetaMap configurations. Our methodology, reference codes, measurements, results, and workflow are valuable references for optimizing and configuring MetaMap.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA