Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 77(1): 305-322, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35596930

RESUMEN

The burden of liver diseases is increasing worldwide, with liver transplantation remaining the only treatment option for end-stage liver disease. Regenerative medicine holds great potential as a therapeutic alternative, aiming to repair or replace damaged liver tissue with healthy functional cells. The properties of the cells used are critical for the efficacy of this approach. The advent of liver organoids has not only offered new insights into human physiology and pathophysiology, but also provided an optimal source of cells for regenerative medicine and translational applications. Here, we discuss various historical aspects of 3D organoid culture, how it has been applied to the hepatobiliary system, and how organoid technology intersects with the emerging global field of liver regenerative medicine. We outline the hepatocyte, cholangiocyte, and nonparenchymal organoids systems available and discuss their advantages and limitations for regenerative medicine as well as future directions.


Asunto(s)
Gastroenterología , Humanos , Organoides , Hígado , Medicina Regenerativa , Hepatocitos
2.
Cytotherapy ; 25(5): 483-489, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842850

RESUMEN

BACKGROUND AIMS: Roux en y anastomosis is a preferred method of biliary reconstruction in liver transplantation that involves living donors or pediatric patients. However, biliary stricture is a frequent and serious complication, accounting for up to 40% of biliary complications in these patients. Previously, we demonstrated that extraluminal delivery of adipose-derived (AD) mesenchymal stromal cells (MSCs) decreased peri-biliary fibrosis and increased neo-angiogenesis in a porcine model of duct-to-duct biliary anastomosis. In this study, we used a porcine model of Roux en y anastomosis to evaluate the beneficial impact of a novel intraluminal MSC delivery system. METHODS: Nine animals were divided into three groups: no stent (group 1), bare stent (group 2) and stent coated with AD-MSCs (group 3). All animals underwent cholecystectomy with roux en y choledochojejunostomy. Two animals per group were followed for 4 weeks and one animal per group was followed for 8 weeks. Cholangiograms and blood were sampled at baseline and the end of study. Biliary tissue was collected and examined by Masson trichrome staining and immunohistochemical staining for MSC markers (CD34 and CD44) and for neo-angiogenesis (CD31). RESULTS: Two of three animals in group 1 developed an anastomotic site stricture. No strictures were observed in the animals of group 2 or group 3. CD34 and CD44 staining showed that AD-MSCs engrafted successfully at the anastomotic site by intraluminal delivery (group 3). Furthermore, biliary tissue from group 3 showed significantly less fibrosis and increased angiogenesis compared with the other groups. CONCLUSIONS: Intraluminal delivery of AD-MSCs resulted in successful biliary engraftment of AD-MSCs as well as reduced peri-biliary fibrosis and increased neo-angiogenesis.


Asunto(s)
Procedimientos Quirúrgicos del Sistema Biliar , Células Madre Mesenquimatosas , Porcinos , Animales , Coledocostomía , Procedimientos Quirúrgicos del Sistema Biliar/métodos , Anastomosis en-Y de Roux , Fibrosis , Complicaciones Posoperatorias , Estudios Retrospectivos , Resultado del Tratamiento
3.
J Hepatol ; 76(4): 921-933, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34953958

RESUMEN

BACKGROUND & AIMS: Biliary disease is associated with a proliferative/fibrogenic ductular reaction (DR). p300 is an epigenetic regulator that acetylates lysine 27 on histone 3 (H3K27ac) and is activated during fibrosis. Long non-coding RNAs (lncRNAs) are aberrantly expressed in cholangiopathies, but little is known about how they recruit epigenetic complexes and regulate DR. We investigated epigenetic complexes, including transcription factors (TFs) and lncRNAs, contributing to p300-mediated transcription during fibrosis. METHODS: We evaluated p300 in vivo using tamoxifen-inducible, cholangiocyte-selective, p300 knockout (KO) coupled with bile duct ligation (BDL) and Mdr KO mice treated with SGC-CBP30. Primary cholangiocytes and liver tissue were analyzed for expression of Acta2-as1 lncRNA by qPCR and RNA in situ hybridization. In vitro, we performed RNA-sequencing in human cholangiocytes with a p300 inhibitor. Cholangiocytes were exposed to lipopolysaccharide (LPS) as an injury model. We confirmed formation of a p300/ELK1 complex by immunoprecipitation (IP). RNA IP was used to examine interactions between ACTA2-AS1 and p300. Chromatin IP assays were used to evaluate p300/ELK1 occupancy and p300-mediated H3K27ac. Organoids were generated from ACTA2-AS1-depleted cholangiocytes. RESULTS: BDL-induced DR and fibrosis were reduced in Krt19-CreERT/p300fl/fl mice. Similarly, Mdr KO mice were protected from DR and fibrosis after SGC-CBP30 treatment. In vitro, depletion of ACTA2-AS1 reduced expression of proliferative/fibrogenic markers, reduced LPS-induced cholangiocyte proliferation, and impaired organoid formation. ACTA2-AS1 regulated transcription by facilitating p300/ELK1 binding to the PDGFB promoter after LPS exposure. Correspondingly, LPS-induced H3K27ac was mediated by p300/ELK1 and was reduced in ACTA2-AS1-depleted cholangiocytes. CONCLUSION: Cholangiocyte-selective p300 KO or p300 inhibition attenuate DR/fibrosis in mice. ACTA2-AS1 influences recruitment of p300/ELK1 to specific promoters to drive H3K27ac and epigenetic activation of proliferative/fibrogenic genes. This suggests that cooperation between epigenetic co-activators and lncRNAs facilitates DR/fibrosis in biliary diseases. LAY SUMMARY: We identified a three-part complex containing an RNA molecule, a transcription factor, and an epigenetic enzyme. The complex is active in injured bile duct cells and contributes to activation of genes involved in proliferation and fibrosis.


Asunto(s)
ARN Largo no Codificante , Animales , Conductos Biliares/patología , Proliferación Celular , Fibrosis , Lipopolisacáridos , Hígado/patología , Ratones , Ratones Noqueados , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Gastroenterology ; 160(3): 889-905.e10, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33058867

RESUMEN

BACKGROUND & AIMS: Transforming growth factor ß (TGFß) upregulates cholangiocyte-derived signals that activate myofibroblasts and promote fibrosis. Using epigenomic and transcriptomic approaches, we sought to distinguish the epigenetic activation mechanisms downstream of TGFß that mediate transcription of fibrogenic signals. METHODS: Chromatin immunoprecipitation (ChIP)-seq and RNA-seq were performed to assess histone modifications and transcriptional changes following TGFß stimulation. Histone modifications and acetyltransferase occupancy were confirmed using ChIP assays. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) was used to investigate changes in chromatin accessibility. Cholangiocyte cell lines and primary cholangiocytes were used for in vitro studies. Mdr2-/- and 3,5-diethoxycarboncyl-1,4-dihydrocollidine (DDC)-fed mice were used as animal models. RESULTS: TGFß stimulation caused widespread changes in histone 3 lysine 27 acetylation (H3K27ac), and was associated with global TGFß-mediated transcription. In contrast, H3K9ac was gained in a smaller group of chromatin sites and was associated with fibrosis pathways. These pathways included overexpression of hepatic stellate cell (HSC) activators such as fibronectin 1 (FN1) and SERPINE1. The promoters of these genes showed H3K9ac enrichment following TGFß. Of the acetyltransferases responsible for H3K9ac, cholangiocytes predominantly express Lysine Acetyltransferases 2A (KAT2A). Small interfering RNA knockdown of KAT2A or H3K9ac inhibition prevented the TGFß-mediated increase in FN1 and SERPINE1. SMAD3 ChIP-seq and ATAC-seq suggested that TGFß-mediated H3K9ac occurs through SMAD signaling, which was confirmed using colocalization and genetic knockdown studies. Pharmacologic inhibition or cholangiocyte-selective deletion of Kat2a was protective in mouse models of biliary fibrosis. CONCLUSIONS: Cholangiocyte expression of HSC-activating signals occurs through SMAD-dependent, KAT2A-mediated, H3K9ac, and can be targeted to prevent biliary fibrosis.


Asunto(s)
Conductos Biliares/patología , Epigénesis Genética/genética , Histonas/metabolismo , Cirrosis Hepática Biliar/genética , Factor de Crecimiento Transformador beta/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Acetilación/efectos de los fármacos , Animales , Conductos Biliares/citología , Conductos Biliares/efectos de los fármacos , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Epigenómica , Técnicas de Silenciamiento del Gen , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Cirrosis Hepática Biliar/inducido químicamente , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/patología , Ratones , Ratones Noqueados , Miofibroblastos/patología , Cultivo Primario de Células , Piridinas/administración & dosificación , Piridinas/toxicidad , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
5.
J Hepatol ; 73(1): 149-160, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32087348

RESUMEN

BACKGROUND & AIMS: Steatohepatitis drives fibrogenesis in alcohol-related liver disease. Recent studies have suggested that hepatic stellate cells (HSCs) may regulate the parenchymal cell injury and inflammation that precedes liver fibrosis, although the mechanism remains incompletely defined. Neuropilin-1 (NRP-1) and synectin are membrane proteins implicated in HSC activation. In this study, we disrupted NRP-1 and synectin as models to evaluate the role of HSC activation on the development of steatohepatitis in response to alcohol feeding in mice. METHODS: Mice with HSC-selective deletion of NRP (ColCre/Nrp1loxP) or synectin (ColCre/synectinloxP) vs. paired Nrp1loxP or synectinloxP mice were fed a control diet or the chronic/binge alcohol feeding model. Several markers of steatosis and inflammation were evaluated. RESULTS: ColCre/Nrp1loxP mice showed less fibrosis, as expected, but also less inflammation and steatosis, with lower hepatic triglyceride content. Similar results were observed in the synectin model. Hepatocytes treated with supernatant of HSCs from ColCre/Nrp1loxP mice compared to supernatant from Nrp1loxP mice were protected against ethanol-induced lipid droplet formation. An adipokine and inflammatory protein array from the supernatant of HSCs with NRP-1 knockdown showed a significant reduction in Igfbp3 (a major insulin-like growth factor-binding protein with multiple metabolic functions) and an increase in SerpinA12 (a serine-protease inhibitor) secretion compared to wild-type HSCs. Recombinant Igfbp3 induced lipid droplets, triglyceride accumulation, and lipogenic genes in hepatocytes in vitro, while SerpinA12 was protective against ethanol-induced steatosis. Finally, Igfbp3 was increased, and SerpinA12 was decreased in serum and liver tissue from patients with alcoholic hepatitis. CONCLUSION: Selective deletion of NRP-1 from HSCs attenuates alcohol-induced steatohepatitis through regulation of Igfbp3 and SerpinA12 signaling. LAY SUMMARY: Hepatic stellate cells are known for their role in fibrosis (scarring of the liver). In this study, we describe their role in the modulation of fat deposition and inflammation in the liver, which occurs secondary to alcohol damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hígado Graso Alcohólico , Células Estrelladas Hepáticas/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neuropilina-1/metabolismo , Serpinas/metabolismo , Animales , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/complicaciones , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/patología , Fibrosis/etiología , Fibrosis/inmunología , Inflamación/metabolismo , Ratones , Inhibidores de Serina Proteinasa/metabolismo , Transducción de Señal
6.
Liver Transpl ; 26(1): 100-112, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31742878

RESUMEN

Biliary complications (strictures and leaks) represent major limitations in living donor liver transplantation. Mesenchymal stem cells (MSCs) are a promising modality to prevent biliary complications because of immunosuppressive and angiogenic properties. Our goal was to evaluate the safety of adipose-derived MSC delivery to biliary anastomoses in a porcine model. Secondary objectives were defining the optimal method of delivery (intraluminal versus extraluminal) and to investigate MSC engraftment, angiogenesis, and fibrosis. Pigs were divided into 3 groups. Animals underwent adipose collection, MSC isolation, and expansion. Two weeks later, animals underwent bile duct transection, reanastomosis, and stent insertion. Group 1 received plastic stents wrapped in unseeded Vicryl mesh. Group 2 received stents wrapped in MSC-seeded mesh. Group 3 received unwrapped stents with the anastomosis immersed in an MSC suspension. Animals were killed 1 month after stent insertion when cholangiograms and biliary tissue were obtained. Serum was collected for liver biochemistries. Tissue was used for hematoxylin-eosin and trichrome staining and immunohistochemistry for MSC markers (CD44 and CD34) and for a marker of neoangiogenesis (CD31). There were no intraoperative complications. One pig died on postoperative day 3 due to acute cholangitis. All others recovered without complications. Cholangiography demonstrated no biliary leaks and minimal luminal narrowing. Surviving animals exhibited no symptoms, abnormal liver biochemistries, or clinically significant biliary stricturing. Group 3 showed significantly greater CD44 and CD34 staining, indicating MSC engraftment. Fibrosis was reduced at the anastomotic site in group 3 based on trichrome stain. CD31 staining of group 3 was more pronounced, supporting enhanced neoangiogenesis. In conclusion, adipose-derived MSCs were safely applied to biliary anastomoses. MSCs were locally engrafted within the bile duct and may have beneficial effects in terms of fibrosis and angiogenesis.


Asunto(s)
Trasplante de Hígado , Células Madre Mesenquimatosas , Animales , Conductos Biliares/cirugía , Humanos , Inmersión , Donadores Vivos , Complicaciones Posoperatorias , Stents , Porcinos
7.
Hepatology ; 70(5): 1674-1689, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31070797

RESUMEN

During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor ß (TGF-ß). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-ß signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-ß. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-ß response. EZH2 overexpression suppressed TGF-ß-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-ß. TGF-ß also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-ß. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-ß-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-ß regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.


Asunto(s)
Enfermedades de los Conductos Biliares/metabolismo , Conductos Biliares/citología , Conductos Biliares/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células Epiteliales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Animales , Células Cultivadas , Femenino , Fibrosis , Humanos , Masculino , Ratones
8.
Am J Pathol ; 187(1): 134-145, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27840081

RESUMEN

Dynamin-2 (Dyn2) is implicated in endocytosis of receptor tyrosine kinases, which contribute to hepatic stellate cell (HSC) activation and liver fibrosis. A point mutation converting lysine 44 of Dyn2 to alanine (Dyn2K44A) disrupts its GTPase activity. We hypothesized that Dyn2K44A expression in HSCs would decrease HSC activation and fibrogenesis in vivo by disrupting receptor tyrosine kinase endocytosis and signaling. Dyn2K44Afl/fl mice were crossed with Collagen1-Cre (Col1Cre) mice to generate offspring with HSC selective expression of Dyn2K44A (Col1Cre/Dyn2K44Afl/fl). Contrary to our hypothesis, Col1Cre/Dyn2K44Afl/fl mice showed increased hepatic fibrosis in response to liver injury. To elucidate mechanisms, we conducted in vitro experiments with HSCs infected with adenoviral vectors encoding LacZ, Dyn2K44A, or Dyn2WT. HSC-expressing Dyn2K44A displayed increased mRNA and protein levels of sphingosine kinase-1 (SK1), an enzyme previously implicated in the pathogenesis of fibrosis. To study the functional effects of Dyn2K44A regulation of SK1, we examined effects of AKT signaling and migration in HSCs. Dyn2K44A promoted both AKT phosphorylation and HSC migration in an SK1-dependent manner. Genetic disruption of Dyn2 GTPase activity selectively in HSC enhances fibrogenesis, driven at least in part through up-regulation of the SK1 pathway and cell migration in HSCs.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Dinamina II/metabolismo , Células Estrelladas Hepáticas/enzimología , Cirrosis Hepática/enzimología , Cirrosis Hepática/patología , Lisofosfolípidos/farmacología , Esfingosina/análogos & derivados , Animales , Conductos Biliares/metabolismo , Conductos Biliares/patología , Tetracloruro de Carbono , Colágeno Tipo I/metabolismo , Células Estrelladas Hepáticas/patología , Ligadura , Ratones , Proteínas Mutantes/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/farmacología , Regulación hacia Arriba/efectos de los fármacos
9.
Hepatology ; 65(3): 983-998, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28039913

RESUMEN

Fibrogenesis encompasses the deposition of matrix proteins, such as collagen I, by hepatic stellate cells (HSCs) that culminates in cirrhosis. Fibrogenic signals drive transcription of procollagen I, which enters the endoplasmic reticulum (ER), is trafficked through the secretory pathway, and released to generate extracellular matrix. Alternatively, disruption of procollagen I ER export could activate the unfolded protein response (UPR) and drive HSC apoptosis. Using a small interfering RNA screen, we identified Transport and Golgi organization 1 (TANGO1) as a potential participant in collagen I secretion. We investigated the role of TANGO1 in procollagen I secretion in HSCs and liver fibrogenesis. Depletion of TANGO1 in HSCs blocked collagen I secretion without affecting other matrix proteins. Disruption of secretion led to procollagen I retention within the ER, induction of the UPR, and HSC apoptosis. In wild-type (WT) HSCs, both TANGO1 and the UPR were induced by transforming growth factor ß (TGFß). As the UPR up-regulates proteins involved in secretion, we studied whether TANGO1 was a target of the UPR. We found that UPR signaling is responsible for up-regulating TANGO1 in response to TGFß, and this mechanism is mediated by the transcription factor X-box binding protein 1 (XBP1). In vivo, murine and human cirrhotic tissue displayed increased TANGO1 messenger RNA levels. Finally, TANGO1+/- mice displayed less hepatic fibrosis compared to WT mice in two separate murine models: CCl4 and bile duct ligation. CONCLUSION: Loss of TANGO1 leads to procollagen I retention in the ER, which promotes UPR-mediated HSC apoptosis. TANGO1 regulation during HSC activation occurs through a UPR-dependent mechanism that requires the transcription factor, XBP1. Finally, TANGO1 is critical for fibrogenesis through mediating HSC homeostasis. The work reveals a unique role for TANGO1 and the UPR in facilitating collagen I secretion and fibrogenesis. (Hepatology 2017;65:983-998).


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , Respuesta de Proteína Desplegada/genética , Animales , Apoptosis/fisiología , Compuestos de Bencilideno/farmacología , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/citología , Humanos , Hidantoínas/farmacología , Immunoblotting , Cirrosis Hepática/genética , Ratones , Microscopía Confocal , Reacción en Cadena de la Polimerasa/métodos , Distribución Aleatoria , Sensibilidad y Especificidad , Regulación hacia Arriba
10.
Semin Liver Dis ; 37(1): 17-27, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28201845

RESUMEN

Despite decades of basic research, biliary diseases remain prevalent, highly morbid, and notoriously difficult to treat. We have, however, dramatically increased our understanding of biliary developmental biology, cholangiocyte pathophysiology, and the endogenous mechanisms of biliary regeneration and repair. All of this complex and rapidly evolving knowledge coincides with an explosion of new technological advances in the area of regenerative medicine. New breakthroughs such as induced pluripotent stem cells and organoid culture are increasingly being applied to the biliary system; it is only a matter of time until new regenerative therapeutics for the cholangiopathies are unveiled. In this review, the authors integrate what is known about biliary development, regeneration, and repair, and link these conceptual advances to the technological breakthroughs that are collectively driving the emergence of a new global field in biliary regenerative medicine.


Asunto(s)
Enfermedades de las Vías Biliares/terapia , Sistema Biliar/fisiología , Regeneración , Animales , Sistema Biliar/metabolismo , Enfermedades de las Vías Biliares/fisiopatología , Humanos , Hígado/metabolismo , Hígado/fisiología , Medicina Regenerativa/tendencias , Células Madre/citología
11.
Lab Invest ; 97(11): 1385-1396, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892096

RESUMEN

Primary sclerosing cholangitis (PSC) is an incurable, fibroinflammatory biliary disease for which there is no effective pharmacotherapy. We recently reported cholangiocyte senescence as an important phenotype in PSC while others showed that portal macrophages accumulate in PSC. Unfortunately, our ability to explore cholangiocyte senescence and macrophage accumulation has been hampered by limited in vitro models. Thus, our aim was to develop and characterize a three-dimensional (3D) model of normal and diseased bile ducts (cholangioids) starting with normal human cholangiocytes (NHC), senescent NHC (NHC-sen), and cholangiocytes from PSC patients. In 3D culture, NHCs formed spheroids of ~5000 cells with a central lumen of ~150 µm. By confocal microscopy and western blot, cholangioids retained expression of cholangiocyte proteins (cytokeratin 7/19) and markers of epithelial polarity (secretin receptor and GM130). Cholangioids are functionally active, and upon secretin stimulation, luminal size increased by ~80%. Cholangioids exposed to hydrogen peroxide exhibited cellular senescence and the senescence-associated secretory phenotype (SASP; increased IL-6, p21, SA-ß-Gal, yH2A.x and p16 expression). Furthermore, cholangioids derived from NHC-sen or PSC patients were smaller and had slower growth than the controls. When co-cultured with THP-1 macrophages, the number of macrophages associated with NHC-sen or PSC cholangioids was five- to seven-fold greater compared to co-culture with non-senescent NHC. We observed that NHC-sen and PSC cholangioids release greater number of extracellular vesicles (EVs) compared to controls. Moreover, conditioned media from NHC-sen cholangioids resulted in an ~2-fold increase in macrophage migration. In summary, we developed a method to generate normal and diseased cholangioids, characterized them morphologically and functionally, showed that they can be induced to senescence and SASP, and demonstrated both EV release and macrophage attraction. This novel model mimics several features of PSC, and thus will be useful for studying the pathogenesis of PSC and potentially identifying new therapeutic targets.


Asunto(s)
Conductos Biliares/patología , Colangitis Esclerosante/patología , Esferoides Celulares/patología , Autoantígenos/metabolismo , Conductos Biliares/efectos de los fármacos , Conductos Biliares/metabolismo , Conductos Biliares/ultraestructura , Biomarcadores/metabolismo , Línea Celular , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/metabolismo , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Vesículas Extracelulares/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/toxicidad , Queratina-19/metabolismo , Queratina-7/metabolismo , Activación de Macrófagos , Macrófagos/citología , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Cuerpos Multivesiculares/efectos de los fármacos , Cuerpos Multivesiculares/metabolismo , Cuerpos Multivesiculares/patología , Cuerpos Multivesiculares/ultraestructura , Oxidantes/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestructura
12.
J Hepatol ; 67(1): 72-83, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28237397

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a biliary malignancy linked to genetic and epigenetic abnormalities, such as hypermethylation of SOX17 promoter. Here, the role of SOX17 in cholangiocyte differentiation and cholangiocarcinogenesis was studied. METHODS: SOX17 expression/function was evaluated along the differentiation of human induced pluripotent stem cells (iPSC) into cholangiocytes, in the dedifferentiation process of normal human cholangiocytes (NHC) in culture and in cholangiocarcinogenesis. Lentiviruses for SOX17 overexpression or knockdown were used. Gene expression and DNA methylation profiling were performed. RESULTS: SOX17 expression is induced in the last stage of cholangiocyte differentiation from iPSC and regulates the acquisition of biliary markers. SOX17 becomes downregulated in NHC undergoing dedifferentiation; experimental SOX17 knockdown in differentiated NHC downregulated biliary markers and promoted baseline and Wnt-dependent proliferation. SOX17 expression is lower in human CCA than in healthy tissue, which correlates with worse survival after tumor resection. In CCA cells, SOX17 overexpression decreased their tumorigenic capacity in murine xenograft models, which was related to increased oxidative stress and apoptosis. In contrast, SOX17 overexpression in NHC did not affect their survival but inhibited their baseline proliferation. In CCA cells, SOX17 inhibited migration, anchorage-independent growth and Wnt/ß-catenin-dependent proliferation, and restored the expression of biliary markers and primary cilium length. In human CCA, SOX17 promoter was found hypermethylated and its expression inversely correlates with the methylation grade. In NHC, Wnt3a decreased SOX17 expression in a DNMT-dependent manner, whereas in CCA, DNMT1 inhibition or silencing upregulated SOX17. CONCLUSIONS: SOX17 regulates the differentiation and maintenance of the biliary phenotype and functions as a tumor suppressor for CCA, being a potential prognostic marker and a promising therapeutic target. LAY SUMMARY: Understanding the molecular mechanisms involved in the pathogenesis of CCA is key in finding new valuable diagnostic and prognostic biomarkers, as well as therapeutic targets. This study provides evidence that SOX17 regulates the differentiation and maintenance of the biliary phenotype, and its downregulation promotes their tumorigenic transformation. SOX17 acts as a tumor suppressor in CCA and its genetic, molecular and/or pharmacological restoration may represent a new promising therapeutic strategy. Moreover, SOX17 expression correlates with the outcome of patients after tumor resection, being a potential prognostic biomarker.


Asunto(s)
Neoplasias de los Conductos Biliares/etiología , Conductos Biliares/patología , Colangiocarcinoma/etiología , Factores de Transcripción SOXF/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Factores de Transcripción SOXF/análisis , Factores de Transcripción SOXF/genética
14.
J Biol Chem ; 290(52): 30684-96, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26534962

RESUMEN

Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.


Asunto(s)
Exosomas/metabolismo , Células Estrelladas Hepáticas/citología , Cirrosis Hepática/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Movimiento Celular , Células Estrelladas Hepáticas/metabolismo , Humanos , Integrinas/genética , Integrinas/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/fisiopatología , Ratones , Ratones Endogámicos C57BL , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
16.
J Biol Chem ; 289(22): 15798-809, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24759103

RESUMEN

Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Metabolismo de los Lípidos/fisiología , Transducción de Señal/fisiología , Factores de Transcripción Sp/metabolismo , Animales , Cromatina/metabolismo , Células Endoteliales/citología , Epigénesis Genética/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Hígado/citología , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factores de Transcripción Sp/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Activación Transcripcional/fisiología
17.
Lab Invest ; 95(6): 684-96, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25867762

RESUMEN

Cholangiocytes are the target of a heterogeneous group of liver diseases known as the cholangiopathies. An evolving understanding of the mechanisms driving biliary development provides the theoretical underpinnings for rational development of induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs). Therefore, the aims of this study were to develop an approach to generate iDCs and to fully characterize the cells in vitro and in vivo. Human iPSC lines were generated by forced expression of the Yamanaka pluripotency factors. We then pursued a stepwise differentiation strategy toward iDCs, using precise temporal exposure to key biliary morphogens, and we characterized the cells, using a variety of morphologic, molecular, cell biologic, functional, and in vivo approaches. Morphology shows a stepwise phenotypic change toward an epithelial monolayer. Molecular analysis during differentiation shows appropriate enrichment in markers of iPSC, definitive endoderm, hepatic specification, hepatic progenitors, and ultimately cholangiocytes. Immunostaining, western blotting, and flow cytometry demonstrate enrichment of multiple functionally relevant biliary proteins. RNA sequencing reveals that the transcriptome moves progressively toward that of human cholangiocytes. iDCs generate intracellular calcium signaling in response to ATP, form intact primary cilia, and self-assemble into duct-like structures in three-dimensional culture. In vivo, the cells engraft within mouse liver, following retrograde intrabiliary infusion. In summary, we have developed a novel approach to generate mature cholangiocytes from iPSCs. In addition to providing a model of biliary differentiation, iDCs represent a platform for in vitro disease modeling, pharmacologic testing, and individualized, cell-based, regenerative therapies for the cholangiopathies.


Asunto(s)
Conductos Biliares/citología , Células Epiteliales/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Conductos Biliares/química , Conductos Biliares/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Señalización del Calcio , Diferenciación Celular , Ingeniería Celular , Línea Celular , Células Epiteliales/química , Células Epiteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/metabolismo , Hígado/química , Hígado/citología , Hígado/metabolismo , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Biomedicines ; 12(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927479

RESUMEN

In this study, a mixed porcine-human bioengineered liver (MPH-BEL) was used in a preclinical setup of extracorporeal liver support devices as a treatment for a model of post-resection liver failure (PRLF). The potential for human clinical application is further illustrated by comparing the functional capacity of MPH-BEL grafts as assessed using this porcine PRLF model with fully human (FH-BEL) grafts which were perfused and assessed in vitro. BEL grafts were produced by reseeding liver scaffolds with HUVEC and primary porcine hepatocytes (MPH-BEL) or primary human hepatocytes (FH-BEL). PRLF was induced by performing an 85% liver resection in domestic white pigs and randomized into the following three groups 24 h after resection: standard medical therapy (SMT) alone, SMT + extracorporeal circuit (ECC), and SMT + MPH-BEL. The detoxification and metabolic functions of the MPH-BEL grafts were compared to FH-BEL grafts which were perfused in vitro. During the 24 h treatment interval, INR values normalized within 18 h in the MPH-BEL therapy group and urea synthesis increased as compared to the SMT and SMT + ECC control groups. The MPH-BEL treatment was associated with more rapid decline in hematocrit and platelet count compared to both control groups. Histological analysis demonstrated platelet sequestration in the MPH-BEL grafts, possibly related to immune activation. Significantly higher rates of ammonia clearance and metabolic function were observed in the FH-BEL grafts perfused in vitro than in the MPH-BEL grafts. The MPH-BEL treatment was associated with improved markers of liver function in PRLF. Further improvement in liver function in the BEL grafts was observed by seeding the biomatrix with human hepatocytes. Methods to reduce platelet sequestration within BEL grafts is an area of ongoing research.

20.
Sci Adv ; 10(26): eadn5228, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941469

RESUMEN

Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.


Asunto(s)
Vesículas Extracelulares , Glucólisis , Células Estrelladas Hepáticas , Cirrosis Hepática , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Vesículas Extracelulares/metabolismo , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Humanos , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA