Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Technol ; 58(22): 9760-9769, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775357

RESUMEN

Peroxyacetyl nitrate (PAN) is produced in the atmosphere by photochemical oxidation of non-methane volatile organic compounds in the presence of nitrogen oxides (NOx), and it can be transported over long distances at cold temperatures before decomposing thermally to release NOx in the remote troposphere. It is both a tracer and a precursor for transpacific ozone pollution transported from East Asia to North America. Here, we directly demonstrate this transport with PAN satellite observations from the infrared atmospheric sounding interferometer (IASI). We reprocess the IASI PAN retrievals by replacing the constant prior vertical profile with vertical shape factors from the GEOS-Chem model that capture the contrasting shapes observed from aircraft over South Korea (KORUS-AQ) and the North Pacific (ATom). The reprocessed IASI PAN observations show maximum transpacific transport of East Asian pollution in spring, with events over the Northeast Pacific offshore from the Western US associated in GEOS-Chem with elevated ozone in the lower free troposphere. However, these events increase surface ozone in the US by less than 1 ppbv because the East Asian pollution mainly remains offshore as it circulates the Pacific High.


Asunto(s)
Ozono , Ozono/química , Atmósfera/química , Contaminantes Atmosféricos , Monitoreo del Ambiente
2.
Environ Sci Technol ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39436375

RESUMEN

Wildfires are an increasing source of emissions into the air, with health effects modulated by the abundance and toxicity of individual species. In this work, we estimate reactive organic compounds (ROC) in western U.S. wildland forest fire smoke using a combination of observations from the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign and predictions from the Community Multiscale Air Quality (CMAQ) model. Standard emission inventory methods capture 40-45% of the estimated ROC mass emitted, with estimates of primary organic aerosol particularly low (5-8×). Downwind, gas-phase species abundances in molar units reflect the production of fragmentation products such as formaldehyde and methanol. Mass-based units emphasize larger compounds, which tend to be unidentified at an individual species level, are less volatile, and are typically not measured in the gas phase. Fire emissions are estimated to total 1250 ± 60 g·C of ROC per kg·C of CO, implying as much carbon is emitted as ROC as is emitted as CO. Particulate ROC has the potential to dominate the cancer and noncancer risk of long-term exposure to inhaled smoke, and better constraining these estimates will require information on the toxicity of particulate ROC from forest fires.

3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930838

RESUMEN

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Biomasa , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera , Ecosistema , Incendios , Ozono/análisis , Ozono/química
4.
Environ Sci Technol ; 55(10): 6688-6699, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33902278

RESUMEN

While carboxylic acids are important components in both particle and gas phases in the atmosphere, their sources and partitioning are not fully understood. In this study, we present real-time measurements of both particle- and gas-phase concentrations for five of the most common and abundant low-molecular-weight carboxylic acids (LMWCA) in a rural region in the southeastern U.S. in Fall 2016. Through comparison with secondary organic aerosol (SOA) tracers, we find that isoprene was the most important local precursor for all five LMWCA but via different pathways. We propose that monocarboxylic acids (formic and acetic acids) were mainly formed through gas-phase photochemical reactions, while dicarboxylic acids (oxalic, malonic, and succinic acids) were predominantly from aqueous processing. Unexpectedly high concentrations of particle-phase formic and acetic acids (in the form of formate and acetate, respectively) were observed and likely the components of long-range transport organic aerosol (OA), decoupled from their gas-phase counterparts. In addition, an extraordinarily strong correlation (R2 = 0.90) was observed between a particulate LMWCA and aged SOA, which we tentatively attribute to boundary layer dynamics.


Asunto(s)
Atmósfera , Ácidos Carboxílicos , Aerosoles , Sudeste de Estados Unidos
5.
Environ Sci Technol ; 55(23): 15646-15657, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34817984

RESUMEN

We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g., CO) to provide relative metrics for the plume width (wi/wCO) and center (bi/wCO). To validate GOMECH, we investigate OH and NO3 oxidation processes in smoke plumes sampled during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality, a 2019 wildfire smoke study). An analysis of 430 crosswind transects demonstrates that nitrous acid (HONO), a primary source of OH, is narrower than CO (wHONO/wCO = 0.73-0.84 ± 0.01) and maleic anhydride (an OH oxidation product) is enhanced on plume edges (wmaleicanhydride/wCO = 1.06-1.12 ± 0.01). By contrast, NO3 production [P(NO3)] occurs mainly at the plume center (wP(NO3)/wCO = 0.91-1.00 ± 0.01). Phenolic emissions, highly reactive to OH and NO3, are narrower than CO (wphenol/wCO = 0.96 ± 0.03, wcatechol/wCO = 0.91 ± 0.01, and wmethylcatechol/wCO = 0.84 ± 0.01), suggesting that plume edge phenolic losses are the greatest. Yet, nitrophenolic aerosol, their oxidation product, is the greatest at the plume center (wnitrophenolicaerosol/wCO = 0.95 ± 0.02). In a large plume case study, GOMECH suggests that nitrocatechol aerosol is most associated with P(NO3). Last, we corroborate GOMECH with a large eddy simulation model which suggests most (55%) of nitrocatechol is produced through NO3 in our case study.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Biomasa , Humo/análisis
6.
Environ Sci Technol ; 51(6): 3355-3363, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28212018

RESUMEN

Hydroperoxyl radical (HO2) is a key species to atmospheric chemistry. At warm temperatures, the HO2 and NO2 come to a rapid steady state with pernitric acid (HO2NO2). This paper presents the derivation of HO2 from observations of HO2NO2 and NO2 in metropolitan Atlanta, US, in winter 2014 and summer 2015. HO2 was observed to have a diurnal cycle with morning concentrations suppressed by high NO from the traffic. At night, derived HO2 levels were nonzero and exhibited correlations with O3 and NO3, consistent with previous studies that ozonolysis and oxidation by NO3 are sources of nighttime HO2. Measured and model calculated HO2 were in reasonable agreement: Without the constraint of measured HO2NO2, the model reproduced HO2 with a model-to-observed ratio (M/O) of 1.27 (r = 0.54) for winter, 2014, and 0.70 (r = 0.80) for summer, 2015. Adding measured HO2NO2 as a constraint, the model predicted HO2 with M/O = 1.13 (r = 0.77) for winter 2014 and 0.90 (r = 0.97) for summer 2015. These results demonstrate the feasibility of deriving HO2 from HO2NO2 measurements in warm regions where HO2NO2 has a short lifetime.


Asunto(s)
Yoduros , Estaciones del Año , Espectrometría de Masas , Oxidación-Reducción , Temperatura
7.
Environ Sci Technol ; 51(17): 9588-9595, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28806070

RESUMEN

Molecular chlorine (Cl2) and nitryl chloride (ClNO2) concentrations were measured using chemical ionization mass spectrometry at a rural site over the North China Plain during June 2014. High levels of daytime Cl2 up to ∼450 pptv were observed. The average diurnal Cl2 mixing ratios showed a maximum around noon at ∼100 pptv. ClNO2 exhibited a strong diurnal variation with early morning maxima reaching ppbv levels and afternoon minima sustained above 60 pptv. A moderate correlation (R2 = 0.31) between Cl2 and sulfur dioxide was observed, perhaps indicating a role for power plant emissions in the generation of the observed chlorine. We also observed a strong correlation (R2 = 0.83) between daytime (10:00-20:00) Cl2 and ClNO2, which implies that both of them were formed from a similar mechanism. In addition, Cl2 production is likely associated with a photochemical mechanism as Cl2 concentrations varied with ozone (O3) levels. The impact of Cl2 and ClNO2 as Cl atom sources is investigated using a photochemical box model. We estimated that the produced Cl atoms oxidized slightly more alkanes than OH radicals and enhanced the daily concentrations of peroxy radicals by 15% and the O3 production rate by 19%.


Asunto(s)
Cloro , Monitoreo del Ambiente , Nitritos , Contaminantes Atmosféricos , China , Ozono
8.
J Phys Chem A ; 120(9): 1468-78, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26575342

RESUMEN

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO3. We infer the following production rate constants [in (cm(3)/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10(-12) (CH3O2NO2), 5.1(±3.1) × 10(-13) (HO2NO2), 1.3(±0.8) × 10(-11) (PAN), 7.3(±3.4) × 10(-12) (PPN), and 6.2(±2.9) × 10(-12) (HNO3). The HNO3 and HO2NO2 rates are ∼ 30-50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO3 production from the HO2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO2, keeping the total combined rate for the two processes at the rate reported for HNO3 production above.

9.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34878847

RESUMEN

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

10.
Environ Sci Technol ; 44(18): 7017-22, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20707413

RESUMEN

We analyze the observations of near-surface peroxy acetyl nitrate (PAN) and its precursors in Beijing, China in August of 2007. The levels of PAN are remarkably high (up to 14 ppbv), surpassing those measured over other urban regions in recent years. Analyses employing a 1-D version of a chemical transport model (Regional chEmical and trAnsport Model, REAM) indicate that aromatic non-methane hydrocarbons (NMHCs) are the dominant (55-75%) PAN source. The major oxidation product of aromatics that produces acetyl peroxy radicals is methylglyoxal (MGLY). PAN and O(3) in the observations are correlated at daytime; aromatic NMHCs appear to play an important role in O(3) photochemistry. Previous NMHC measurements indicate the presence of reactive aromatics at high levels over broad polluted regions of China. Aromatics are often ignored in global and (to a lesser degree) regional 3D photochemical transport models; their emissions over China as well as photochemistry are quite uncertain. Our findings suggest that critical assessments of aromatics emissions and chemistry (such as the yields of MGLY) are necessary to understand and assess ozone photochemistry and regional pollution export in China.


Asunto(s)
Hidrocarburos Aromáticos/análisis , Ácido Peracético/análogos & derivados , China , Modelos Químicos , Movimiento (Física) , Ácido Peracético/análisis , Factores de Tiempo
11.
J Geophys Res Atmos ; 122(20): 11201-11226, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29527424

RESUMEN

Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 pptv near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.

12.
Mass Spectrom Rev ; 26(2): 166-84, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17243143

RESUMEN

Chemical ionization mass spectrometry (CIMS) has proven to be a powerful method for sensitive, fast time response (t approximately 1 sec) measurements of various atmospheric compounds with limits of detection (LOD) of the order of tens of pptv and lower. The rapid time response of CIMS is particularly well suited for airborne measurements and its application has largely grown out of airborne measurements in the stratosphere and upper troposphere. This work reviews some of the advances in CIMS technology that have occurred in the past decade. In particular, CIMS methods for selective measurement of reactive nitrogen species (e.g., HNO3, HO2NO2, PAN, and NH3) in the lower atmosphere (altitudes approximately 0-8 km) are described. In addition, recent developments in CIMS technology for the selective measurement of gas-phase hydroperoxides and aerosol chemical composition are briefly described.

13.
Environ Sci Technol ; 37(13): 2975-81, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12875403

RESUMEN

An ultraviolet (UV) optical absorption system has been developed for absolute calibrations of nitric acid (HNO3) and ammonia (NH3) permeation tube emission rates. Using this technique, dilute mixtures containing NH3 or HNO3, both of which interact strongly with many surfaces, are accurately measured at levels below a part per million by volume. This compact and portable instrument operates continuously and autonomously to rapidly (<1 h) quantify the emission of trace gases from permeation devices that are commonly used to calibrate air-monitoring instruments. The output from several HNO3 and NH3 permeation tubes, with emission rates that ranged between 13 and 150 ng/min, was examined as a function of temperature, pressure, and carrier gas flow. Absorptions of 0.015% can be detected which allows a precision (3sigma) of +/-1 ng/min for the HNO3 and NH3 permeation tubes studied here. The accuracy of the measurements, which relies on published UV absorption cross sections, is estimated to be +/-10%. Measurements of permeation tube emission rates using ion chromatography analysis are made to further assess measurement accuracy. The output from the HNO3 and NH3 permeation tubes examined here was stable over the study period, which ranged between 3 months and 1 year for each permeation tube.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Ácido Nítrico/análisis , Movimientos del Aire , Calibración , Óptica y Fotónica , Permeabilidad , Sensibilidad y Especificidad , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA