Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioorg Chem ; 107: 104596, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33421953

RESUMEN

A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid ß (Aß) aggregation and mitochondrial enzyme ABAD, whose interaction with Aß leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aß aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Benzotiazoles/farmacología , Colinérgicos/farmacología , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Tacrina/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Benzotiazoles/química , Colinérgicos/síntesis química , Colinérgicos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Tacrina/química
2.
Bioorg Med Chem ; 28(1): 115209, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31757681

RESUMEN

Heterogeneity in disease mechanisms between genetically distinct patients contributes to high attrition rates in late stage clinical drug development. New personalized medicine strategies aim to identify predictive biomarkers which stratify patients most likely to respond to a particular therapy. However, for complex multifactorial diseases not characterized by a single genetic driver, empirical approaches to identifying predictive biomarkers and the most promising therapies for personalized medicine are required. In vitro pharmacogenomics seeks to correlate in vitro drug sensitivity testing across panels of genetically distinct cell models with genomic, gene expression or proteomic data to identify predictive biomarkers of drug response. However, the vast majority of in vitro pharmacogenomic studies performed to date are limited to dose-response screening upon a single viability assay endpoint. In this article we describe the application of multiparametric high content phenotypic screening and the theta comparative cell scoring method to quantify and rank compound hits, screened at a single concentration, which induce a broad variety of divergent phenotypic responses between distinct breast cancer cell lines. High content screening followed by transcriptomic pathway analysis identified serotonin receptor modulators which display selective activity upon breast cancer cell cycle and cytokine signaling pathways correlating with inhibition of cell growth and survival. These methods describe a new evidence-led approach to rapidly identify compounds which display distinct response between different cell types. The results presented also warrant further investigation of the selective activity of serotonin receptor modulators upon breast cancer cell growth and survival as a potential drug repurposing opportunity.


Asunto(s)
Antineoplásicos/química , Citocinas/metabolismo , Receptores de Serotonina/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Farmacogenética , Receptores de Serotonina/química , Transducción de Señal/efectos de los fármacos , Triflupromazina/química , Triflupromazina/metabolismo , Triflupromazina/farmacología
3.
Molecules ; 24(15)2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31362457

RESUMEN

: It has long been established that mitochondrial dysfunction in Alzheimer's disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17ß-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17ß-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/química , Benzotiazoles/química , Urea/química , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Mitocondrias/metabolismo , Estructura Molecular , Relación Estructura-Actividad
4.
ACS Chem Biol ; 17(7): 1876-1889, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35696676

RESUMEN

Esophageal adenocarcinoma is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, the lack of "druggable" driver mutations, and the dominance of large-scale genomic rearrangements. We have previously undertaken a comprehensive small-molecule phenotypic screen using the high-content Cell Painting assay to quantify the morphological response to a total of 19,555 small molecules across a panel of genetically distinct human esophageal cell lines to identify new therapeutic targets and small molecules for the treatment of esophageal adenocarcinoma. In this current study, we report for the first time the dose-response validation studies for the 72 screening hits from the target-annotated LOPAC and Prestwick FDA-approved compound libraries and the full list of 51 validated esophageal adenocarcinoma-selective small molecules (71% validation rate). We then focus on the most potent and selective hit molecules, elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate. Using a multipronged, multitechnology approach, we uncover a unified mechanism of action and a vulnerability in esophageal adenocarcinoma toward copper-dependent cell death that could be targeted in the future.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Adenocarcinoma/tratamiento farmacológico , Cobre/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Humanos , Ionóforos/farmacología , Fenotipo
5.
Cell Chem Biol ; 28(3): 338-355, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33740435

RESUMEN

Conventional thinking in modern drug discovery postulates that the design of highly selective molecules which act on a single disease-associated target will yield safer and more effective drugs. However, high clinical attrition rates and the lack of progress in developing new effective treatments for many important diseases of unmet therapeutic need challenge this hypothesis. This assumption also impinges upon the efficiency of target agnostic phenotypic drug discovery strategies, where early target deconvolution is seen as a critical step to progress phenotypic hits. In this review we provide an overview of how emerging phenotypic and pathway-profiling technologies integrate to deconvolute the mechanism-of-action of phenotypic hits. We propose that such in-depth mechanistic profiling may support more efficient phenotypic drug discovery strategies that are designed to more appropriately address complex heterogeneous diseases of unmet need.


Asunto(s)
Enfermedad , Descubrimiento de Drogas , Preparaciones Farmacéuticas/química , Humanos , Fenotipo
6.
SLAS Discov ; 25(7): 770-782, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32441181

RESUMEN

Esophageal adenocarcinoma (EAC) is a highly heterogeneous disease, dominated by large-scale genomic rearrangements and copy number alterations. Such characteristics have hampered conventional target-directed drug discovery and personalized medicine strategies, contributing to poor outcomes for patients. We describe the application of a high-content Cell Painting assay to profile the phenotypic response of 19,555 compounds across a panel of six EAC cell lines and two tissue-matched control lines. We built an automated high-content image analysis pipeline to identify compounds that selectively modified the phenotype of EAC cell lines. We further trained a machine-learning model to predict the mechanism of action of EAC selective compounds using phenotypic fingerprints from a library of reference compounds. We identified a number of phenotypic clusters enriched with similar pharmacological classes, including methotrexate and three other antimetabolites that are highly selective for EAC cell lines. We further identify a small number of hits from our diverse chemical library that show potent and selective activity for EAC cell lines and that do not cluster with the reference library of compounds, indicating they may be selectively targeting novel esophageal cancer biology. Overall, our results demonstrate that our EAC phenotypic screening platform can identify existing pharmacologic classes and novel compounds with selective activity for EAC cell phenotypes.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Reposicionamiento de Medicamentos , Neoplasias Esofágicas/tratamiento farmacológico , Imagen Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Línea Celular Tumoral , Descubrimiento de Drogas/tendencias , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/patología , Perfilación de la Expresión Génica , Humanos , Aprendizaje Automático , Fenotipo
7.
Front Neurosci ; 10: 177, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199640

RESUMEN

HIGHLIGHTS Many AD target combinations are being explored for multi-target drug design.New databases and models increase the potential of computational drug designLiraglutide and other antidiabetics are strong candidates for repurposing to AD.Donecopride a dual 5-HT/AChE inhibitor shows promise in pre-clinical studies Alzheimer's Disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs (MTDs). Intended as an introduction for non-experts, this review describes the key MTD design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch, and the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer's Disease are rasagiline, originally developed for the treatment of Parkinson's Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA