Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 295(44): 14916-14935, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32816993

RESUMEN

Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.


Asunto(s)
Plantas/inmunología , Receptores Inmunológicos/metabolismo , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Plantas/metabolismo , Transducción de Señal
2.
New Phytol ; 222(1): 438-454, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30536576

RESUMEN

The potato blight agent Phytophthora infestans secretes a range of RXLR effectors to promote disease. Recent evidence indicates that some effectors suppress early pattern-triggered immunity (PTI) following perception of microbe-associated molecular patterns (MAMPs). Phytophthora infestans effector PiSFI3/Pi06087/PexRD16 has been previously shown to suppress MAMP-triggered pFRK1-Luciferase reporter gene activity. How PiSFI3 suppresses immunity is unknown. We employed yeast-two-hybrid (Y2H) assays, co-immunoprecipitation, transcriptional silencing by RNA interference and virus-induced gene silencing (VIGS), and X-ray crystallography for structure-guided mutagenesis, to investigate the function of PiSFI3 in targeting a plant U-box-kinase protein (StUBK) to suppress immunity. We discovered that PiSFI3 is active in the host nucleus and interacts in yeast and in planta with StUBK. UBK is a positive regulator of specific PTI pathways in both potato and Nicotiana benthamiana. Importantly, it contributes to early transcriptional responses that are suppressed by PiSFI3. PiSFI3 forms an unusual trans-homodimer. Mutation to disrupt dimerization prevents nucleolar localisation of PiSFI3 and attenuates both its interaction with StUBK and its ability to enhance P. infestans leaf colonisation. PiSFI3 is a 'WY-domain' RXLR effector that forms a novel trans-homodimer which is required for its ability to suppress PTI via interaction with the U-box-kinase protein StUBK.


Asunto(s)
Phytophthora infestans/metabolismo , Proteínas Quinasas/metabolismo , Proteínas/metabolismo , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Transcripción Genética , Apoptosis/efectos de los fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Flagelina/farmacología , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Phytophthora infestans/patogenicidad , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteínas Quinasas/química , Multimerización de Proteína , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/genética , Virulencia
3.
Proc Natl Acad Sci U S A ; 113(30): E4407-14, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27412861

RESUMEN

Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply.


Asunto(s)
Aminoácidos/genética , Transferasas Intramoleculares/genética , Proteínas de Plantas/genética , Triterpenos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Avena/enzimología , Avena/genética , Avena/metabolismo , Secuencia Conservada/genética , Ciclización , Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Triterpenos/química
4.
J Biol Chem ; 291(38): 20270-20282, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27458016

RESUMEN

Filamentous plant pathogens deliver effector proteins to host cells to promote infection. The Phytophthora infestans RXLR-type effector PexRD54 binds potato ATG8 via its ATG8 family-interacting motif (AIM) and perturbs host-selective autophagy. However, the structural basis of this interaction remains unknown. Here, we define the crystal structure of PexRD54, which includes a modular architecture, including five tandem repeat domains, with the AIM sequence presented at the disordered C terminus. To determine the interface between PexRD54 and ATG8, we solved the crystal structure of potato ATG8CL in complex with a peptide comprising the effector's AIM sequence, and we established a model of the full-length PexRD54-ATG8CL complex using small angle x-ray scattering. Structure-informed deletion of the PexRD54 tandem domains reveals retention of ATG8CL binding in vitro and in planta This study offers new insights into structure/function relationships of oomycete RXLR effectors and how these proteins engage with host cell targets to promote disease.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Phytophthora infestans , Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Cristalografía por Rayos X , Phytophthora infestans/química , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
5.
New Phytol ; 216(3): 897-914, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28857169

RESUMEN

Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2R45H ), but retain full virulence. Here we investigate the virulence function of Avr2 and determine its crystal structure. Transgenic tomato and Arabidopsis expressing either wild-type ΔspAvr2 (deleted signal-peptide) or the ΔspAvr2R45H variant become hypersusceptible to fungal, and even bacterial infections, suggesting that Avr2 targets a conserved defense mechanism. Indeed, Avr2 transgenic plants are attenuated in immunity-related readouts, including flg22-induced growth inhibition, ROS production and callose deposition. The crystal structure of Avr2 reveals that the protein shares intriguing structural similarity to ToxA from the wheat pathogen Pyrenophora tritici-repentis and to TRAF proteins. The I-2 resistance-breaking Avr2V41M , Avr2R45H and Avr2R46P variants cluster on a surface-presented loop. Structure-guided mutagenesis enabled uncoupling of virulence from I-2-mediated recognition. We conclude that I-2-mediated recognition is not based on monitoring Avr2 virulence activity, which includes suppression of immune responses via an evolutionarily conserved effector target, but by recognition of a distinct epitope.


Asunto(s)
Proteínas Fúngicas/química , Fusarium/patogenicidad , Enfermedades de las Plantas/inmunología , Relación Estructura-Actividad , Factores de Virulencia/química , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Cristalografía por Rayos X , Susceptibilidad a Enfermedades , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Germinación , Glucanos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Micotoxinas/química , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Pliegue de Proteína , Pseudomonas syringae/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(35): E3360-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940321

RESUMEN

Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, ß-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate ß-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13ß-epoxy-3ß,16ß-dihydroxy-oleanane (12,13ß-epoxy-16ß-hydroxy-ß-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family--as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism.


Asunto(s)
Antiinfecciosos/metabolismo , Avena/metabolismo , Esterol 14-Desmetilasa/metabolismo , Triterpenos/metabolismo , Secuencia de Aminoácidos , Transferasas Intramoleculares/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/genética , Nicotiana/enzimología
7.
Proc Natl Acad Sci U S A ; 109(27): E1830-8, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22691497

RESUMEN

The cycle inhibiting factors (Cifs) are a family of translocated effector proteins, found in diverse pathogenic bacteria, that interfere with the host cell cycle by catalyzing the deamidation of a specific glutamine residue (Gln40) in NEDD8 and the related protein ubiquitin. This modification prevents recycling of neddylated cullin-RING ligases, leading to stabilization of various cullin-RING ligase targets, and also prevents polyubiquitin chain formation. Here, we report the crystal structures of two Cif/NEDD8 complexes, revealing a conserved molecular interface that defines enzyme/substrate recognition. Mutation of residues forming the interface suggests that shape complementarity, rather than specific individual interactions, is a critical feature for complex formation. We show that Cifs from diverse bacteria bind NEDD8 in vitro and conclude that they will all interact with their substrates in the same way. The "occluding loop" in Cif gates access to Gln40 by forcing a conformational change in the C terminus of NEDD8. We used native PAGE to follow the activity of Cif from the human pathogen Yersinia pseudotuberculosis and selected variants, and the position of Gln40 in the active site has allowed us to propose a catalytic mechanism for these enzymes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Photorhabdus/enzimología , Ubiquitinas/química , Ubiquitinas/metabolismo , Yersinia pseudotuberculosis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalización , Glutamina/genética , Células HeLa , Interacciones Huésped-Parásitos/fisiología , Humanos , Datos de Secuencia Molecular , Mutagénesis/fisiología , Proteína NEDD8 , Proteína Oncogénica p21(ras)/metabolismo , Photorhabdus/genética , Poliubiquitina/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Ubiquitinas/genética , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Yersinia pseudotuberculosis/genética , Infecciones por Yersinia pseudotuberculosis/metabolismo , Infecciones por Yersinia pseudotuberculosis/microbiología
8.
Proc Natl Acad Sci U S A ; 109(40): 16371-6, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988101

RESUMEN

Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding-leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4(C), residues 134-221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4(C) required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4(C), and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Variación Genética/genética , Modelos Moleculares , Pseudomonas syringae/inmunología , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/química , Cartilla de ADN/genética , Proteínas de Unión al ADN/inmunología , Immunoblotting , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Conformación Proteica , Pseudomonas syringae/genética , Nicotiana , Técnicas del Sistema de Dos Híbridos , Ultracentrifugación , Levaduras
9.
J Biol Chem ; 288(6): 3696-704, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23258535

RESUMEN

Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.


Asunto(s)
Avena/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Glicosiltransferasas/biosíntesis , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Saponinas/metabolismo , Acilación/fisiología , Avena/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Glicosiltransferasas/genética , Familia de Multigenes/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Saponinas/genética
10.
J Biol Chem ; 286(41): 35834-35842, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21813644

RESUMEN

Phytopathogens deliver effector proteins inside host plant cells to promote infection. These proteins can also be sensed by the plant immune system, leading to restriction of pathogen growth. Effector genes can display signatures of positive selection and rapid evolution, presumably a consequence of their co-evolutionary arms race with plants. The molecular mechanisms underlying how effectors evolve to gain new virulence functions and/or evade the plant immune system are poorly understood. Here, we report the crystal structures of the effector domains from two oomycete RXLR proteins, Phytophthora capsici AVR3a11 and Phytophthora infestans PexRD2. Despite sharing <20% sequence identity in their effector domains, they display a conserved core α-helical fold. Bioinformatic analyses suggest that the core fold occurs in ∼44% of annotated Phytophthora RXLR effectors, both as a single domain and in tandem repeats of up to 11 units. Functionally important and polymorphic residues map to the surface of the structures, and PexRD2, but not AVR3a11, oligomerizes in planta. We conclude that the core α-helical fold enables functional adaptation of these fast evolving effectors through (i) insertion/deletions in loop regions between α-helices, (ii) extensions to the N and C termini, (iii) amino acid replacements in surface residues, (iv) tandem domain duplications, and (v) oligomerization. We hypothesize that the molecular stability provided by this core fold, combined with considerable potential for plasticity, underlies the evolution of effectors that maintain their virulence activities while evading recognition by the plant immune system.


Asunto(s)
Proteínas Fúngicas/química , Phytophthora infestans/química , Pliegue de Proteína , Multimerización de Proteína , Factores de Virulencia/química , Proteínas Fúngicas/metabolismo , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad de la Especie , Factores de Virulencia/metabolismo
11.
Chembiochem ; 10(7): 1122-33, 2009 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-19322850

RESUMEN

Not just another P450: Shown here is a model of the overall structure of CYP74C3 with the putative membrane-binding region that is required for enzyme activation. Members of the CYP74 family of cytochrome P450 enzymes are specialised in the metabolism of hydroperoxides and play an important role in oxylipin metabolism, which is one of the main defence mechanisms employed by plants. In order to respond to their rapidly changing environments, plants have evolved complex signalling pathways, which enable tight control over stress responses. Recent work has shed new light on one of these pathways that involves the different classes of plant oxylipins that are produced through the CYP74 pathway. These phytochemicals play an important role in plant defence, and can act as direct antimicrobials or as signalling molecules that inducing the expression of defence genes. The fine-tuning regulation of defence responses, which depends on the precise cross-talk among different signalling pathways, has important consequences for plant fitness and is a new, challenging area of research. In this review we focus on new data relating to the physiological significance of different phyto-oxylipins and related enzymes. Moreover, recent advances in the biotechnological production of oxylipins are also discussed.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Oxilipinas/metabolismo , Proteínas de Plantas/química , Aldehído-Liasas/metabolismo , Biotecnología , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares/metabolismo , Ácidos Linolénicos/metabolismo , Lipooxigenasa/metabolismo , Oxilipinas/química , Proteínas de Plantas/metabolismo , Transducción de Señal
12.
Nucleic Acids Res ; 35(4): 1322-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17272299

RESUMEN

The attB1 site in the Gateway (Invitrogen) bacterial expression vector pDEST17, necessary for in vitro site-specific recombination, contains the sequence AAA-AAA. The sequence A-AAA-AAG within the Escherichia coli dnaX gene is recognized as 'slippery' and promotes -1 translational frameshifting. We show here, by expressing in E. coli several plant cDNAs with and without single nucleotide deletions close to the translation initiation codons, that pDEST17 is intrinsically susceptible to -1 ribosomal frameshifting at the sequence C-AAA-AAA. The deletion mutants produce correct-sized, active enzymes with a good correlation between enzyme amount and activity. We demonstrate unambiguously the frameshift through a combination of Edman degradation, MALDI-ToF mass fingerprint analysis of tryptic peptides and MALDI-ToF reflectron in-source decay (rISD) sequencing. The degree of frameshifting depends on the nature of the sequence being expressed and ranged from 25 to 60%. These findings suggest that caution should be exercised when employing pDEST17 for high-level protein expression and that the attB1 site has some potential as a tool for studying -1 frameshifting.


Asunto(s)
Sitios de Ligazón Microbiológica , Sistema de Lectura Ribosómico , Vectores Genéticos , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Secuencia de Bases , Western Blotting , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Interpretación Estadística de Datos , Escherichia coli/genética , Expresión Génica , Genoma Bacteriano , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Plantas/enzimología , ARN de Planta/química , Análisis de Secuencia de ADN
13.
PLoS One ; 14(8): e0221226, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31461469

RESUMEN

Plant NLRs are modular immune receptors that trigger rapid cell death in response to attempted infection by pathogens. A highly conserved nucleotide-binding domain shared with APAF-1, various R-proteins and CED-4 (NB-ARC domain) is proposed to act as a molecular switch, cycling between ADP (repressed) and ATP (active) bound forms. Studies of plant NLR NB-ARC domains have revealed functional similarities to mammalian homologues, and provided insight into potential mechanisms of regulation. However, further advances have been limited by difficulties in obtaining sufficient yields of protein suitable for structural and biochemical techniques. From protein expression screens in Escherichia coli and Sf9 insect cells, we defined suitable conditions to produce the NB-ARC domain from the tomato NLR NRC1. Biophysical analyses of this domain showed it is a folded, soluble protein. Structural studies revealed the NRC1 NB-ARC domain had co-purified with ADP, and confirmed predicted structural similarities between plant NLR NB-ARC domains and their mammalian homologues.


Asunto(s)
Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Solanum lycopersicum/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos/genética , Animales , Cromatografía en Gel , Resistencia a la Enfermedad/genética , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Insectos/citología , Solanum lycopersicum/genética , Modelos Moleculares , Motivos de Nucleótidos/genética , Proteínas de Plantas/química , Dominios Proteicos/genética , Pliegue de Proteína
14.
Proteins ; 72(4): 1199-211, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18338380

RESUMEN

In silico structural analysis of CYP74C3, a membrane-associated P450 enzyme from the plant Medicago truncatula (barrel medic) with hydroperoxide lyase (HPL) specificity, showed that it had strong similarities to the structural folds of the classical microsomal P450 enzyme from rabbits (CYP2C5). It was not only the secondary structure predictions that supported the analysis but site directed mutagenesis of the substrate interacting residues was also consistent with it. This led us to develop a substrate-binding model of CYP74C3 which predicted three amino acid residues, N285, F287, and G288 located in the putative I-helix and distal haem pocket of CYP74C3 to be in close proximity to the preferred substrate 13-HPOTE. These residues were judged to be in equivalent positions to those identified in SRS-4 of CYP2C5. Significance of the residues and their relevance to the model were further assessed by site directed mutagenesis of the three residues followed by EPR spectroscopic and detailed kinetic investigations of the mutated proteins in the presence and absence of detergent. Although point mutation of the residues had no effect on the haem content of the mutated proteins, significant effects on the spin state equilibrium of the haem iron were noted. Kinetic effects of the mutations, which were investigated using three different substrates, were dramatic in nature. In the presence of detergent with the preferred substrate (13-HPOTE), the catalytic center activities and substrate binding affinities of the mutant proteins were reduced by a factor of 8-32 and 4-12, respectively, compared with wild-type--a two orders of magnitude reduction in catalytic efficiencies. We believe this is the first report where primary determinants of catalysis for any CYP74 enzyme, which are fully consistent with our model, have been identified. Our working model predicts that N285 is close enough to suggest that a hydrogen bond with the peroxy group of the enzyme substrate 13-HPOTE is warranted, whereas significance of F287 may arise from a strong hydrophobic interaction between the alkyl group(s) of the substrate and the phenyl ring of F287. We believe that G288 is crucial because of its size. Any other residue with a relatively bulky side chain will hinder the access of substrate to the active site. The effects of the mutations suggests that subtle protein conformational changes in the putative substrate-binding pocket regulate the formation of a fully active monomer-micelle complex with low-spin haem iron and that structural communication exists between the substrate- and micelle-binding sites of CYP74C3. Conservation in CYP74 sequence alignments suggests that N285, F287, and G288 in CYP74C3 and the equivalent residues at positions in other CYP74 enzymes are likely to be critical to catalysis. To support this we show that G324 in CYP74D4 (Arabidopsis AOS), equivalent to G288 in CYP74C3, is a primary determinant of positional specificity. We suggest that the overall structure of CYP74 enzymes is likely to be very similar to those described for classical P450 monooxygenase enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Medicago truncatula/enzimología , Proteínas de Plantas/química , Esteroide 21-Hidroxilasa/química , Secuencia de Aminoácidos , Animales , Catálisis , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Familia 2 del Citocromo P450 , Cinética , Ácidos Linoleicos/metabolismo , Ácidos Linolénicos/metabolismo , Peróxidos Lipídicos/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Mutación Puntual , Conejos , Alineación de Secuencia , Esteroide 21-Hidroxilasa/genética
15.
BMC Plant Biol ; 7: 58, 2007 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-17983471

RESUMEN

BACKGROUND: Hydroperoxide lyase (HPL) is a key enzyme in plant oxylipin metabolism that catalyses the cleavage of polyunsaturated fatty acid hydroperoxides produced by the action of lipoxygenase (LOX) to volatile aldehydes and oxo acids. The synthesis of these volatile aldehydes is rapidly induced in plant tissues upon mechanical wounding and insect or pathogen attack. Together with their direct defence role towards different pathogens, these compounds are believed to play an important role in signalling within and between plants, and in the molecular cross-talk between plants and other organisms surrounding them. We have recently described the targeting of a seed 9-HPL to microsomes and putative lipid bodies and were interested to compare the localisation patterns of both a 13-HPL and a 9/13-HPL from Medicago truncatula, which were known to be expressed in leaves and roots, respectively. RESULTS: To study the subcellular localisation of plant 9/13-HPLs, a set of YFP-tagged chimeric constructs were prepared using two M. truncatula HPL cDNAs and the localisation of the corresponding chimeras were verified by confocal microscopy in tobacco protoplasts and leaves. Results reported here indicated a distribution of M.truncatula 9/13-HPL (HPLF) between cytosol and lipid droplets (LD) whereas, as expected, M.truncatula 13-HPL (HPLE) was targeted to plastids. Notably, such endocellular localisation has not yet been reported previously for any 9/13-HPL. To verify a possible physiological significance of such association, purified recombinant HPLF was used in activation experiments with purified seed lipid bodies. Our results showed that lipid bodies can fully activate HPLF. CONCLUSION: We provide evidence for the first CYP74C enzyme, to be targeted to cytosol and LD. We also showed by sedimentation and kinetic analyses that the association with LD or lipid bodies can result in the protein conformational changes required for full activation of the enzyme. This activation mechanism, which supports previous in vitro work with synthetic detergent micelle, fits well with a mechanism for regulating the rate of release of volatile aldehydes that is observed soon after wounding or tissue disruption.


Asunto(s)
Aldehído-Liasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Medicago truncatula/enzimología , Fracciones Subcelulares/enzimología , Secuencia de Bases , Cartilla de ADN , Activación Enzimática , Fluorescencia , Metabolismo de los Lípidos
16.
Biochem J ; 395(3): 641-52, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16454766

RESUMEN

We describe the detailed biochemical characterization of CYP74C3 (cytochrome P450 subfamily 74C3), a recombinant plant cytochrome P450 enzyme with HPL (hydroperoxide lyase) activity from Medicago truncatula (barrel medic). Steady-state kinetic parameters, substrate and product specificities, RZ (Reinheitszahl or purity index), molar absorption coefficient, haem content, and new ligands for an HPL are reported. We show on the basis of gel filtration, sedimentation velocity (sedimentation coefficient distribution) and sedimentation equilibrium (molecular mass) analyses that CYP74C3 has low enzyme activity as a detergent-free, water-soluble, monomer. The enzyme activity can be completely restored by re-activation with detergent micelles, but not detergent monomers. Corresponding changes in the spin state equilibrium, and probably co-ordination of the haem iron, are novel for cytochrome P450 enzymes and suggest that detergent micelles have a subtle effect on protein conformation, rather than substrate presentation, which is sufficient to improve substrate binding and catalytic-centre activity by an order of magnitude. The kcat/K(m) of up to 1.6x10(8) M(-1) x s(-1) is among the highest recorded, which is remarkable for an enzyme whose reaction mechanism involves the scission of a C-C bond. We carried out both kinetic and biophysical studies to demonstrate that this effect is a result of the formation of a complex between a protein monomer and a single detergent micelle. Association with a detergent micelle rather than oligomeric state represents a new mechanism of activation for membrane-associated cytochrome P450 enzymes. Highly concentrated and monodispersed samples of detergent-free CYP74C3 protein may be well suited for the purposes of crystallization and structural resolution of the first plant cytochrome P450 enzyme.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Medicago truncatula/enzimología , Micelas , Aldehído-Liasas/genética , Aldehído-Liasas/aislamiento & purificación , Animales , Tampones (Química) , Cromatografía en Gel , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Detergentes/farmacología , Activación Enzimática/efectos de los fármacos , Cinética , Ligandos , Medicago truncatula/efectos de los fármacos , Medicago truncatula/genética , Ratones , Unión Proteica , Solubilidad , Espectrofotometría , Análisis Espectral , Especificidad por Sustrato , Agua
17.
FEBS Lett ; 580(17): 4188-94, 2006 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-16831431

RESUMEN

We investigate the effects of detergent on the kinetics and oligomeric state of allene oxide synthase (AOS) from Arabidopsis thaliana (CYP74A1). We show that detergent-free CYP74A1 is monomeric and highly water soluble with dual specificity, but has relatively low activity. Detergent micelles promote a 48-fold increase in k(cat)/K(m) (to 5.9 x 10(7)M(-1)s(-1)) with concomitant changes in the spin state equilibrium of the haem-iron due to the binding of a single detergent micelle to the protein monomer, which is atypical of P450 enzymes. This mechanism is shown to be an important determinant of the substrate specificity of CYP74A1. CYP74A1 may be suited for structural resolution of the first plant cytochrome P450 and its 9-AOS activity and behaviour in vitro has implications for its role in planta.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Sistema Enzimático del Citocromo P-450/química , Micelas , Detergentes/química , Oxidorreductasas Intramoleculares , Cinética , Especificidad por Sustrato
18.
Elife ; 52016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26765567

RESUMEN

Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses.


Asunto(s)
Autofagia , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/microbiología , Enfermedades de las Plantas/inmunología , Unión Proteica , Solanum tuberosum/inmunología
19.
FEBS Lett ; 519(1-3): 66-70, 2002 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12023019

RESUMEN

Using expressed sequence tag data, we obtained a full-length cDNA encoding a wheat protein inhibitor of xylanases (XIP-I). The 822 bp open reading frame encoded a protein of 274 amino acids with a molecular mass of 30.2 kDa, in excellent agreement with the native protein. Expression in Escherichia coli confirmed that the cDNA encoded a functional endo-1,4-beta-D-xylanase inhibitor. Its deduced amino acid sequence exhibited highest similarity to sequences classified as class III chitinases, but the inhibitor did not exhibit chitinase activity. This is the first full-length cDNA sequence that encodes a novel class of protein which inhibits the activity of endo-1,4-beta-D-xylanases.


Asunto(s)
Proteínas de Plantas/genética , Triticum/genética , Xilosidasas/antagonistas & inhibidores , Secuencia de Bases , Clonación Molecular , Endo-1,4-beta Xilanasas , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Triticum/enzimología
20.
Methods Mol Biol ; 1127: 231-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643565

RESUMEN

Structural analysis of RXLR effector proteins from oomycete plant pathogens is an emerging area of research. These studies are aimed at understanding the molecular basis of how these proteins manipulate plant cells to promote infection and also to help define how they can lead to activation of the plant innate immune system. Here, we describe a medium-throughput procedure for cloning and expression testing oomycete RXLR proteins in Escherichia coli. We also describe methods for purification of soluble protein and crystallization, with the aim of determining three-dimensional structures by X-ray crystallography. The procedures are generally applicable to any research program where the production of soluble recombinant protein in E. coli has proven difficult, or where there is a desire to evaluate E. coli thoroughly as a host before considering alternative hosts for heterologous expression.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/química , Proteínas/metabolismo , Clonación Molecular , Cristalización , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos/metabolismo , Estructura Terciaria de Proteína , Solubilidad , Sonicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA