Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Invest New Drugs ; 39(4): 1001-1010, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33479856

RESUMEN

Background Aurora A kinase (AurA) overexpression likely contributes to tumorigenesis and therefore represents an attractive target for cancer therapeutics. This phase 1 study aimed to determine the safety, pharmacokinetics, and antitumor activity of LY3295668 erbumine, an AurA inhibitor, in patients with locally advanced or metastatic solid tumors. Methods Patients with locally advanced or metastatic solid tumors, Eastern Cooperative Oncology Group performance status 0-1, and disease progression after one to four prior treatment regimens were enrolled. Primary objective was to determine maximum tolerated dose (MTD); secondary objectives included evaluation of the tolerability and safety profile and pharmacokinetics of LY3295668. All patients received twice-daily (BID) oral LY3295668 in 21-day cycles in an ascending-dose schedule. Results Twelve patients were enrolled in phase 1 (25 mg, n = 8; 50 mg, n = 2; 75 mg, n = 2) and one patient was enrolled after. Overall, four patients experienced dose-limiting toxicities (DLTs) within the first cycle (75 mg: Grade 3 diarrhea [one patient], Grade 4 mucositis and Grade 3 corneal deposits [one patient]; 50 mg: mucositis and diarrhea [both Grade 3, one patient]; 25 mg: Grade 3 mucositis [one patient]). Patients exhibiting DLTs had the highest model-predicted exposures at steady state. Mucositis was the most common adverse event (67%), followed by diarrhea, fatigue, alopecia, anorexia, constipation, and nausea. Nine patients had best response of stable disease; the disease control rate was 69%. Conclusions MTD of LY3295668 was 25 mg BID. LY3295668 had a manageable toxicity profile and demonstrated activity in some patients with locally advanced or metastatic solid tumors.Trial registration ClinicalTrials.gov, NCT03092934. Registered March 22, 2017. https://clinicaltrials.gov/ct2/show/NCT03092934 .


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Adulto , Anciano , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias/patología , Piperidinas/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Pirazoles/efectos adversos , Resultado del Tratamiento
2.
Xenobiotica ; 49(12): 1458-1469, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30694093

RESUMEN

Dry blood spot (DBS) analysis has been extensively used for the quantitative analysis of drugs by mass spectrometry; however, utilization of DBS for qualitative metabolite profiling has been very limited. In the present study, we investigated the use of DBS for metabolite profiling of genistein, carbamazepine, losartan, sunitinib, sildenafil and zoniporide representing a range of Phase I and Phase II biotransformations following oral and intravenous dosing to rats. Plasma and DBS were collected for PK and metabolite profiling. Analyte extraction recovery from DBS was optimized using the parent compound and metabolite standard. Rat DBS metabolite profiles from all six compounds were similar to plasma metabolite profiles, however Phase II metabolites appeared to be extracted less efficiently from DBS compared to plasma, and compounds that were unstable in blood showed different metabolite profiles. In summary, this study showed that in addition to PK bioanalytical analysis, DBS samples may also be utilized for metabolite profiling and a comparison of plasma and DBS metabolite profiling can also provide partitioning/association of major circulating metabolites compared to the parent drug even in the absence of a metabolite standard.


Asunto(s)
Pruebas con Sangre Seca/métodos , Preparaciones Farmacéuticas/sangre , Preparaciones Farmacéuticas/metabolismo , Administración Intravenosa , Administración Oral , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Preparaciones Farmacéuticas/administración & dosificación , Farmacocinética , Ratas Sprague-Dawley
3.
J Pharm Pharm Sci ; 19(4): 496-510, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28057168

RESUMEN

PURPOSE: Current practices applied to mouse pharmacokinetic (PK) studies often use large numbers of animals with sporadic or composite sampling that inadequately describe PK profiles.  The purpose of this work was to evaluate and optimize blood microsampling techniques coupled with dried blood spot (DBS) and LC-MS/MS analysis to generate reliable PK data in mice.  In addition, the feasibility of cross-over designs was assessed and recommendations are presented. METHODS: The work describes a comprehensive evaluation of five blood microsampling techniques (tail clip, tail vein with needle hub, submandibular, retro-orbital, and saphenous bleeding) in CD-1 mice.  The feasibility of blood sampling was evaluated based on animal observations, ease of bleeding, and ability to collect serial samples.  Methotrexate, gemfibrozil and glipizide were used as test compounds and were dosed either orally or intravenously, followed by DBS collection and LC-MS/MS analysis to compare PK with various bleeding methods. RESULTS: Submandibular and retro-orbital methods that required non-serial blood collections did not allow for inter-animal variability assessments and resulted in poorly described absorption and distribution kinetics.  The submandibular and tail vein with needle-hub methods were the least favorable from a technical feasibility perspective.  Serial bleeding was possible with cannulated animals or saphenous bleeding in non-cannulated animals. CONCLUSIONS:   Of the methods that allowed serial sampling, the saphenous method when executed as described in this report, was most practical, reproducible and provided for assessment of inter-animal variability.  It enabled the collection of complete exposure profiles from a single mouse and the conduct of an intravenous/oral cross-over study design.  This methodology can be used routinely, it promotes the 3Rs principles by achieving reductions in the number of animals used, decreased restraints and animal stress, and improved the quality of data obtained in mouse PK studies. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Asunto(s)
Recolección de Muestras de Sangre , Pruebas con Sangre Seca , Gemfibrozilo/sangre , Glipizida/sangre , Metotrexato/sangre , Animales , Cromatografía Liquida , Estudios Cruzados , Masculino , Ratones , Espectrometría de Masas en Tándem
4.
Xenobiotica ; 45(12): 1081-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946562

RESUMEN

1. Nuclear magnetic resonance (NMR), a non-selective and inherently quantitative method, has not been widely used as a quantitative tool for characterizing the disposition of lead molecules prior to clinical development. As a test case, we have chosen a fluoropyrimidine compound in lead optimization phase and evaluated its disposition following oral administration to rats using 19F NMR. 2. Urine, bile and feces from individual rats were profiled and the amount of dose eliminated in each matrix was calculated. The results indicated that, in male rats, the mean dose eliminated over 0-48 h was 40%, with 28% in urine, 9% in bile and 3% in feces. In female rats, the mean dose recovered in excreta over the same period was 55%, with 40% in urine, 8% in bile and 7% in feces. 3. In addition, plasma from rats and plasma from toxicology study in dogs were also profiled and exposure of circulating entities was determined. Plasma exposure determined by 19F NMR was in good agreement with those determined by conventional LC-MS/MS method, suggesting quantitative 19F NMR can be reliably used to estimate single dose or steady-state systemic exposure of circulating entities in animals and humans.


Asunto(s)
Descubrimiento de Drogas/métodos , Radioisótopos de Flúor/farmacocinética , Espectroscopía de Resonancia Magnética/métodos , Animales , Bilis/química , Biotransformación , Perros , Heces/química , Femenino , Humanos , Marcaje Isotópico , Masculino , Pirimidinas/farmacocinética , Pirimidinas/toxicidad , Ratas , Ratas Sprague-Dawley , Distribución Tisular
5.
Invest New Drugs ; 31(4): 833-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23275061

RESUMEN

The HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (Ki) of 2 nM, a pharmacodynamic residence time (Koff) of 0.00132 min(-1) and t1/2 of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037).


Asunto(s)
Indazoles/farmacología , Niacinamida/análogos & derivados , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Tetrazoles/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Disponibilidad Biológica , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Indazoles/administración & dosificación , Indazoles/química , Ratones , Mutación/genética , Niacinamida/administración & dosificación , Niacinamida/química , Niacinamida/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tetrazoles/administración & dosificación , Tetrazoles/química , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992688

RESUMEN

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Antígeno B7-H1/genética , Aurora Quinasa A/genética , Aurora Quinasa A/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Mitosis , Interferones/genética
7.
J Pharm Sci ; 108(2): 1017-1026, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30244007

RESUMEN

1-Aminobenzotriazole (ABT) has been widely used as a nonspecific mechanism-based inhibitor of cytochrome P450 (P450) enzymes. It is extensively used in preclinical studies to determine the relative contribution of oxidative metabolism mediated by P450 in vitro and in vivo. The aim of present study was to understand the translation of fraction metabolized by P450 in dog hepatocytes to in vivo using ABT, for canagliflozin, known to be cleared by P450-mediated oxidation and UDP-glucuronosyltransferases-mediated glucuronidation, and 3 drug discovery project compounds mainly cleared by hepatic metabolism. In a dog hepatocyte, intrinsic clearance assay with and without preincubation of ABT, 3 Lilly compounds exhibited a wide range of fraction metabolized by P450. Subsequent metabolite profiling in dog hepatocytes demonstrated a combination of metabolism by P450 and UDP-glucuronosyltransferases. In vivo, dogs were pretreated with 50 mg/kg ABT or vehicle at 2 h before intravenous administration of canagliflozin and Lilly compounds. The areas under the concentration-time curve (AUC) were compared for the ABT-pretreated and vehicle-pretreated groups. The measured AUCABT/AUCveh ratios were correlated to fraction of metabolism by P450 in dog hepatocytes, suggesting that in vitro ABT inhibition in hepatocytes is useful to rank order compounds for in vivo fraction of metabolism assessment.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Perros/metabolismo , Hígado/metabolismo , Triazoles/metabolismo , Animales , Canagliflozina/sangre , Canagliflozina/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/sangre , Perros/sangre , Glucuronosiltransferasa/metabolismo , Hepatocitos/metabolismo , Hígado/citología , Masculino , Oxidación-Reducción , Triazoles/sangre
8.
Mol Cancer Ther ; 18(12): 2207-2219, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31530649

RESUMEN

Although Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform-selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes. Several Aurora inhibitors are in clinical trials for T/B-cell lymphoma, multiple myeloma, leukemia, lung, and breast cancers. Here, we describe an Aurora A-selective inhibitor, LY3295668, which potently inhibits Aurora autophosphorylation and its kinase activity in vitro and in vivo, persistently arrests cancer cells in mitosis, and induces more profound apoptosis than Aurora B or Aurora A/B dual inhibitors without Aurora B inhibition-associated cytokinesis failure and aneuploidy. LY3295668 inhibits the growth of a broad panel of cancer cell lines, including small-cell lung and breast cancer cells. It demonstrates significant efficacy in small-cell lung cancer xenograft and patient-derived tumor preclinical models as a single agent and in combination with standard-of-care agents. LY3295668, as a highly Aurora A-selective inhibitor, may represent a preferred approach to the current pan-Aurora inhibitors as a cancer therapeutic agent.


Asunto(s)
Antineoplásicos/uso terapéutico , Aurora Quinasa A/antagonistas & inhibidores , Mitosis/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Femenino , Células HeLa , Humanos , Masculino
9.
Cancer Discov ; 9(2): 248-263, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30373917

RESUMEN

Loss-of-function mutations in the retinoblastoma gene RB1 are common in several treatment-refractory cancers such as small-cell lung cancer and triple-negative breast cancer. To identify drugs synthetic lethal with RB1 mutation (RB1 mut), we tested 36 cell-cycle inhibitors using a cancer cell panel profiling approach optimized to discern cytotoxic from cytostatic effects. Inhibitors of the Aurora kinases AURKA and AURKB showed the strongest RB1 association in this assay. LY3295668, an AURKA inhibitor with over 1,000-fold selectivity versus AURKB, is distinguished by minimal toxicity to bone marrow cells at concentrations active against RB1 mut cancer cells and leads to durable regression of RB1 mut tumor xenografts at exposures that are well tolerated in rodents. Genetic suppression screens identified enforcers of the spindle-assembly checkpoint (SAC) as essential for LY3295668 cytotoxicity in RB1-deficient cancers and suggest a model in which a primed SAC creates a unique dependency on AURKA for mitotic exit and survival. SIGNIFICANCE: The identification of a synthetic lethal interaction between RB1 and AURKA inhibition, and the discovery of a drug that can be dosed continuously to achieve uninterrupted inhibition of AURKA kinase activity without myelosuppression, suggest a new approach for the treatment of RB1-deficient malignancies, including patients progressing on CDK4/6 inhibitors.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Proteínas de Unión a Retinoblastoma/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Proteínas de Unión a Retinoblastoma/genética , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Sci Rep ; 8(1): 15458, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337562

RESUMEN

AICARFT is a folate dependent catalytic site within the ATIC gene, part of the purine biosynthetic pathway, a pathway frequently upregulated in cancers. LSN3213128 is a potent (16 nM) anti-folate inhibitor of AICARFT and selective relative to TS, SHMT1, MTHFD1, MTHFD2 and MTHFD2L. Increases in ZMP, accompanied by activation of AMPK and cell growth inhibition, were observed with treatment of LY3213128. These effects on ZMP and proliferation were dependent on folate levels. In human breast MDA-MB-231met2 and lung NCI-H460 cell lines, growth inhibition was rescued by hypoxanthine, but not in the A9 murine cell line which is deficient in purine salvage. In athymic nude mice, LSN3213128 robustly elevates ZMP in MDA-MB-231met2, NCI-H460 and A9 tumors in a time and dose dependent manner. Significant tumor growth inhibition in human breast MDA-MB231met2 and lung NCI-H460 xenografts and in the syngeneic A9 tumor model were observed with oral administration of LSN3213128. Strikingly, AMPK appeared activated within the tumors and did not change even at high levels of intratumoral ZMP after weeks of dosing. These results support the evaluation of LSN3213128 as an antineoplastic agent.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos , Inhibidores Enzimáticos/farmacología , Transferasas de Hidroximetilo y Formilo/antagonistas & inhibidores , Neoplasias Pulmonares , Complejos Multienzimáticos/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Nucleótido Desaminasas/antagonistas & inhibidores , Ribonucleótidos , Aminoimidazol Carboxamida/farmacocinética , Aminoimidazol Carboxamida/farmacología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Humanos , Transferasas de Hidroximetilo y Formilo/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Complejos Multienzimáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleótido Desaminasas/metabolismo , Ribonucleótidos/farmacocinética , Ribonucleótidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA